Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по САиПР / Тема 7_Лекция 8_Выбор в условиях риска.doc
Скачиваний:
38
Добавлен:
02.05.2014
Размер:
201.22 Кб
Скачать

ТЕМА 8. ПРИНЯТИЕ РЕШЕНИЕ В УСЛОВИЯХ

НЕОПРЕДЕЛЕННОСТИ

Лекция 8.

  1. Случай известных вероятностей. Выбор в условиях риска

1.1. Полезность ожидаемых результатов

1.2. Функция полезности при наличии риска

1.3. Дерево решений

  1. Энтропия системы. Принцип максимизации энтропии

  1. Случай известных вероятностей. Выбор в условиях риска

Рассмотрим задачу выбора, когда решение может привести не к одному, а к нескольким результатам с разными вероятностями их осуществления. Если эти вероятности известны, то сложность задачи будет зависеть от количества показателей системы.

Рассмотрим процесс принятия решения в случае одного показателя. Поскольку нам предстоит формировать функцию полезности, определим еще раз, что мы будем понимать под термином «полезность», «функция полезности».

    1. . Полезность ожидаемых результатов

В процессе выбора варианта решения нам часто бывает необходимо учитывать индивидуальное отношение людей к рассматриваемым показателям, и мы оцениваем полезность ожидаемых результатов. Полезность, или показатель полезности – это число, приписываемое конкретному результату, например, рабочей характеристике или состоянию системы, и представляющее собой оценку значимости этого результата по восприятию определенного человека или группы людей. Например, важными факторами являются финансовые затраты, экономический выигрыш, вес конструкции. При наличии единственного критерия и определенной связи между вариантами решения и значением этого критерия (целевой функции, или функции полезности) мы имеем задачу линейного (или нелинейного) программирования. В реальных задачах однозначно определить вид функции полезности часто не представляется возможным. Рассмотрим это на простом примере.

Более 200 лет назад Бернулли, рассматривая вопрос о полезности богатства, пришел к выводу, что заданное приращение богатства не обязательно принесет строго определенное приращение счастья (удовлетворения). Напротив, чем бóльшим богатством обладает человек, тем меньше будет добавка полезности на определенную величину приращения богатства. Т.е. миллионер получит от подарка в 100 долларов гораздо меньшее удовлетворение, чем бедняк. Бернулли предположил, что приращение полезности обратно пропорционально богатству человека и вывел формулу

где u – полезность богатства, x – богатство, b - коэффициент пропорциональности. Интегрируя, получим u = bln x +C. Если положить b=C=1, то u =ln x, а если b = lg e, то

u =lg x.

Предположим, что приращение полезности пропорционально и приращению полезности, которого не хватает для «полного счастья», и приращению количества денег. Это значит, что если кто-то испытывает полное удовлетворение от имеющегося богатства, то приращение богатства уже не дает человеку приращение удовлетворения. Тогда мы можем записать следующую зависимость:

du = b(1-u)dx,

где u = 1 соответствует случаю полного удовлетворения. Приняв u = 0 для x = 0, в результате интегрирования получим

u = e-bx .

Эта функция также описывает более медленное изменение полезности, чем линейная.

Такие функции полезности могут использоваться для оценки предпочтительности той или иной альтернативы (варианта решения). различный вид функций полезности может отражать разные психологические установки людей, условия окружающей среды, влияющие на решение и т.п.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.