Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Информация и информатика.doc
Скачиваний:
2
Добавлен:
17.11.2019
Размер:
1.28 Mб
Скачать

2.6. Кодування графічних даних

Якщо розглянути за допомогою збільшувального скла чорно-біле графічне зображення, надруковане в газеті чи книзі, то можна побачити, що воно складається з дрібних крапок, що утворюють характерний візерунок, що називають растром.

Оскільки лінійні координати й індивідуальні властивості кожної крапки (яскравість) можна виразити за допомогою цілих чисел, то можна сказати, що растрове кодування дозволяє використовувати двійковий код для представлення графічних даний. Загальноприйнятим на сьогоднішній день вважається представлення чорно-білих ілюстрацій у вигляді комбінації крапок з 256 градаціями сірого кольору, і, таким чином, для кодування яскравості будь-якої крапки звичайно досить восьмирозрядного двійкового числа.

Для кодування кольорових графічних зображень застосовується принцип декомпозиції довільного кольору на основні складові. У якості таких складових використовують три основні кольори: червоний (Red, R), зелений (Green, G) і синій (Blue, В). На практиці вважається (хоча теоретично це не зовсім так), що будь-який колір, видимий людським оком, можна одержати шляхом механічного змішування цих трьох основних кольорів. Така система кодування називається системою RGB по перших буквах назв основних кольорів.

Якщо для кодування яскравості кожної з основних складових використовувати по 256 значень (вісім двійкових розрядів), як це прийнято для напівтонових чорно-білих зображень, то на кодування кольору однієї крапки треба затратити 24 розряди. При цьому система кодування забезпечує однозначне визначення 16,5 млн. різних кольорів, що насправді близько до чутливості людського ока. Режим представлення кольорової графіки з використанням 24 двійкових розрядів називається повнокольоровим (True Color).

Кожному з основних кольорів можна поставити у відповідність додатковий колір, тобто колір, що доповнює основний колір до білого. Неважко помітити, що для кожного з основних кольорів додатковим буде колір, утворений сумою пари інших основних кольорів. Відповідно, додатковими кольорами є: блакитний (Cyan,С), пурпурний (Magenta, M) і жовтий (Yellow, Y). Принцип декомпозиції довільного кольору на складові компоненти можна застосовувати не тільки для основних кольорів, але і для додаткових, тобто будь-який колір можна представити у вигляді суми блакитної, пурпурної і жовтої складової. Такий метод кодування кольору прийнятий у поліграфії, але в поліграфії використовується ще і четверта фарба — чорна (Black, К). Тому дана система кодування позначається чотирма буквами CMYK (чорний колір позначається буквою К, тому, що буква В вже зайнята синім кольором), і для представлення кольорової графіки в цій системі треба мати 32-бітний двійковий розряд. Такий режим теж називається повнокольоровим (True Color).

Якщо зменшити кількість двійкових розрядів, що використовуються для кодування кольору кожної крапки, то можна скоротити обсяг даних, але при цьому діапазон кольорів, що кодуються, помітно скорочується. Кодування кольорової графіки 16-розрядними двійковими числами називається режимом High Color.

При кодуванні інформації про колір за допомогою восьми біт дані можна передати тільки 256 колірними відтінками. Такий метод кодування кольору називається індексним. Зміст назви в тім, що, оскільки 256 значень зовсім недостатньо, щоб передати весь діапазон кольорів, доступний людському оку, код кожної крапки растру виражає не колір сам по собі, а тільки його номер (індекс) у деякій довідковій таблиці, що назвають палітрою. Зрозуміло, ця палітра повинна прикладатися до графічних даних — без неї не можна скористатися методами відтворення інформації на екрані чи папері (тобто, скористатися, звичайно, можна, але через неповноту даних отримана інформація не буде адекватною: листя на деревах може виявитися червоним, а небо — зеленим).