Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Часть_3(№10-12).doc
Скачиваний:
27
Добавлен:
17.11.2019
Размер:
4.8 Mб
Скачать

Лабораторная работа № 10

Непрерывность функции. Точки разрыва

Необходимые понятия и теоремы: различные определения непрерыв­ности функции в точке, непрерывность слева, непрерывность справа, точка устранимого разрыва, точка разрыва первого рода, точка разрыва второго рода.

Литература: [1] с. 169 – 176, [2] с. 98 – 135 .

1 Известно, что функция , непрерывна в точке , яв­ляющейся предельной для . Найти .

Пусть функция определена в точке . Можно ли находить , просто вычисляя значение функции в точке , если из­вестно, что не является непрерывной в точке ?

1

2

3

4

5

6

7

8

1.1

1.11

1.2

1.12

1.3

1.13

1.4

1.14

1.5

1.15

1.6

1.16

1.7

1.17

1.8

1.18

1

2

3

4

5

6

7

8

1.9

1.19

1.10

1.20

( ; 1)

0

2 Для функции , с областью определения , точки и положи­тельных чисел и найти такие положительные и , что для любых , удовлетворяющих условию , выполняется усло­вие .

Для произвольного положительного найти такое положительное , что для любых , удовлетворяющих условию , выполня­ется условие . Построить график функции и проил­люстрировать геометрически процедуру поиска по заданному . Запи­сать доказанное утверждение, используя понятие предела и понятие не­прерывности функции в точке:

2.1

1

0,5

0,1

2.11

0,3

0,1

0,01

2.2

2

0,1

0,01

2.12

1

0,3

0,1

2.3

1

0,3

0,1

2.13

2

0,5

0,1

2.4

0,3

0,5

0,1

2.14

1

0,1

0,01

2.5

0,1

0,01

2.15

1

0,3

0,1

2.6

0,3

0,1

2.16

2

0,5

0,1

2.7

0,5

0,1

2.17

1

0,1

0,01

2.8

1

0,1

0,01

2.18

0,3

0,1

2.9

2

0,3

0,1

2.19

0,5

0,1

2.10

1

0,5

0,1

2.20

0,1

0,01