
- •Структура объектов системы нефтепроводного транспорта
- •1. Классификация магистральных нефтепроводов и нефтепродуктопроводов
- •2. Состав сооружений магистральных нефтепроводов и нефтепродуктопроводов
- •Физико-технические свойства нефтей и их поготовка к транспорту
- •3.Состав нефтей и их классификация
- •4. Физико-химические свойства нефтей
- •5. Подготовка нефти к транспорту
- •6. Прием-сдача нефтей определенного качества
- •Насосы для перекачки нефтЕй и нефтепродуктов
- •7. Нефтяные центробежные насосы
- •8. Принцип действия центробежного насоса
- •9. Гидравлические q-h зарактеристики центробежных насосов. Измененение насосных характеристик
- •11. Изменение насосных характеристик
- •12. Привод насоса. Выбор привода
- •13. Теоретический напор, мощность и к.П.Д центробежных насосов, коэффициент быстроходности цбн (основные рабочие параметры)
- •14. Расчет характеристик цбн в зависимости от плотности и вязкости перекачиваемой нефти
- •15. Пересчет характеристик цбн при изменении числа оборотов
- •16. Регулирование подачи цбн
- •17. Работа цбн в группе
- •18. Определение мощности насосов для перекачки нефти
- •Технологический расчет магистральных трубопроводов при стационарном режиме перекачки
- •19. Закон Паскаля
- •20. Уравнение Дарси-Вейсбаха
- •21. Уравнение Бернулли. Определение полного напора в различных сечениях трубопровода
- •22. Исходные данные для технологического расчета
- •23. Расчет параметров транспортируемых нефтей
- •24. Определение коэффициента гидравлического сопротивления внутренней поверхности трубопровода
- •25. Гидравлический уклон. Определение полных потерь давления в трубопроводе
- •26. Уравнение баланса напоров в рельефном трубопроводе
- •27. Потери напора в трубопроводе с лупингами и вставками
- •28. Определение расчетной длины нефтепровода. Перевальная точка
- •29. Характеристики трубопровода, насоса, насосной станции
- •30. Совмещенная характеристика «трубопровод-насос». Рабочая точка
- •31. Подбор насосно-силового оборудования
- •32. Определение необходимого числа насосных станций
- •33. Расстановка нефтеперекачивающих станций по трассе нефтепровода
- •34. Расчет нефтепровода при заданном положении перекачивающих станций
- •35. Расчет коротких трубопроводов
- •36. Изменение подпора перед станциями при изменении вязкости нефти
- •37. Режим работы нефтепровода при отключении нефтеперекачивающих станций
- •38. Нефтепроводы со сбросами и подкачками
- •39. Методы увеличения пропускной способности нефтепровода
- •40. Методы снижения гидравлических потерь
- •42. Регулирование режимов работы трубопроводов изменением параметров трубопроводов дросселированием, байпасированием
- •43. Соотношение диаметров трубопроводов, давления и пропускной способности
- •44. Определение экономически наивыгоднейшего диаметра трубопровода
- •Основные требования к проектированию магистральных нефтепроводов
- •45. Расстояния между трубопроводами при подземной прокладке
- •46. Требования к расстановке запорной арматуры на магистральном нефтепроводе
- •47. Нормативная методика расчета трубопроводов на прочность
- •48. Основные нагрузки и воздействия на нефтепровод
- •49. Расчет толщины стенки трубопровода
- •50. Требования к трубам и марки сталей струб, применяемых при строительстве магистральных нефтепроводов
- •51. Требования к фасонным изделиям и соединительным деталям, применяемым на магистральных нефтепроводах
- •Противокоррозионная защита нефтепроводов и резервуаров
- •52. Классификация коррозионных процессов
- •53. Основные сведения об электрических процессах на поверхности трубопровода, находящегося в почве
- •54. Защитные покрытия нефтепроводов
- •55. Электрохимическая защита нефтепроводов от коррозии
- •56. Расчет длины защищаемого участка при катодной защите мн
- •57. Методы определения состояния коррозионной защиты нефтепроводов
- •58. Противокоррозионная защита резервуаров
- •Эксплуатация линейной части магистральных нефтепроводов
- •59. Утечки нефти из трубопровода и причины их возникновения
- •60. Расчет утечек нефти через отверстия в трубопроводе
- •61. Методы обнаружения утечек нефти из трубопровода
- •62. Определение места утечки по диспетчерским данным
- •63. Истечение нефтепродукта через отверстия в трубопроводах
- •64. Расчет утечек нефтепродукта через отверстия в трубопроводе (см. П.60 Расчет утечек нефти через отверстия в трубопроводе)
- •65. Планирование и расчеты периодических очисток нефтепровода от парафина
- •66. Внеплановая очистка нефтепровода от парафина и водяных скоплений
- •Технологические расчеты нефтепроводов при нустановившихся режимах
- •67. Инерционные свойства потока нефти
- •68. Гидравлический удар в нефтепроводах. Принципы расчета гидравлического удара
- •Перекачка нефтей с аномальными свойствами
- •69. Основные способы перекачки высоковязких и высокозастывающих нефтей и нефтепродуктов
- •70. Реологические свойства нефтей
- •71. Гидротранспорт вязких нефтей и нефтепродуктов
- •72. Перекачка термообработанных нефтей и нефтепродуктов
- •73. Перекачка нефтей с присадками
- •74. Перекачка предварительно подогретых нефтей и нефтепродуктов
- •75. Использование антитурбулентных присадок к нефтепродуктам для снижения потерь напора на трение
- •76. Зависимости основных параметров нефти от концентрации разбавителя
- •77. Вычисление давления насыщенных паров смеси
- •78. Вычисление гидравлических потерь при перекачке с разбавителем
- •79. Гидравлическая характеристика трубопровода при перекачке разбавленной нефти
- •Применение противотурбулентных присадок в трубопроводном транспорте нефти и нефтепродуктов
- •80. Эффект Томса
- •81.Применение противотурбулентных присадок на отечественных нефтепроводах
- •82. Технология ввода присадки в поток в трубопровод
- •83. Механизм действия малых полимерных добавок на поток в трубопроводе
- •107. Классификация нефтебаз
- •108. Номенклатура и основные эксплуатационные характеристики нефтепродуктов, с которыми оперируют нефтебазы
- •109. Физико-химические свойства нефтепродуктов
- •110. Операции, проводимые на нефтебазах
- •111. Объекты нефтебаз и их размещение
- •112. Определение объема резервуарного парка нефтебазы
- •113. Коэффициент оборачиваемости резервуаров
- •114. Резервуары нефтебаз и перекачивающих станций
- •115. Типы резервуаров и их конструкции
- •116. Оптимальные размеры вертикальных стальных резервуаров
- •117. Потери нефти и нефтепродуктов
- •118. Классификация потерь нефти и нефтепродуктов
- •119. Упрощенная теория потерь нефтепродуктов от испарения
- •120. Мероприятия по сокращению потерь от испарения
- •121. Современные средства сокращения потерь бензинов от испарения
46. Требования к расстановке запорной арматуры на магистральном нефтепроводе
На трубопроводах надлежит предусматривать установку запорной арматуры на расстоянии, определяемом расчетом, но не более 30 км.
Кроме того, установку запорной арматуры необходимо предусматривать:
на обоих берегах водных преград при их пересечении трубопроводом в две нитки и более и на однониточных переходах категории В;
в начале каждого ответвления от трубопровода на расстоянии, допускающем установку монтажного узла, его ремонт и безопасную эксплуатацию;
по обеим сторонам автомобильных мостов на расстоянии не менее 250 м;
на одном или обоих концах участков нефтепроводов и нефтепродуктопроводов, проходящих на отметках выше городов и других населенных пунктов и промышленных предприятий, - на расстоянии, устанавливаемом проектом в зависимости от рельефа местности;
на нефтепроводах и нефтепродуктопроводах при пересечении водных преград в одну нитку - место размещения запорной арматуры в этом случае принимается в зависимости от рельефа земной поверхности, примыкающей к переходу, и необходимости предотвращения поступления транспортируемого продукта в водоем;
на обоих берегах болот III типа протяженностью свыше 500 м.
Место установки запорной арматуры для нефтепродуктопроводов, как правило, должно совмещаться с местами соединения участков трубопроводов с различной толщиной стенок.
Запорная арматура диаметром 400 мм и более должна устанавливаться на фундаментные плиты, укладываемые на уплотненное основание.
Доступ обслуживающего персонала должен предусматриваться только к приводу арматуры.
Запорная арматура, устанавливаемая на нефтепроводах и нефтепродуктопроводах в местах перехода через реки или прохождения их на отметках выше населенных пунктов и промышленных предприятий на расстоянии менее 700 м, должна быть оборудована устройствами, обеспечивающими дистанционное управление.
Линейная запорная арматура нефтепроводов и нефтепродуктопроводов на переходах через водные преграды должна быть оснащена автоматикой аварийного закрытия.
На участках нефтепроводов, нефтепродуктопроводов примыкающих к подводным переходам, необходимо предусматривать устройства, исключающие скопление воздуха в трубопроводах в местах их перехода через водные преграды.
47. Нормативная методика расчета трубопроводов на прочность
Прочностной расчет трубопроводов осуществляется по методу предельных состояний. Сущность метода заключается в том, что рассматривается такое напряженное состояние трубопровода, при котором дальнейшая его эксплуатация невозможна. Первое предельное состояние – несущая способность трубопровода (разрушение его под воздействием внутреннего давления), второе – предельно допустимые деформации. Характеристикой несущей способности трубопровода является временное сопротивление металла труб (предел прочности). При расчете на предельно допустимые деформации используется предел текучести материала трубы.
В качестве основных прочностных
характеристик металла трубы в расчетах
трубопроводов используются нормативные
сопротивления растяжению (сжатию).
Нормативные сопротивления
и
принимаются, соответственно, равными
минимальным значениям временного
сопротивления
и предела текучести
.
Расчетные сопротивления
и
определяются по формулам
;
(5.1)
;
(5.2)
где m – коэффициент условий работы
трубопровода, равный 0,6 для участков
трубопроводов категории «В», 0,75 для
участков категорий I и II и 0,9 для участков
категорий III и IV;
– коэффициенты надежности по материалу;
– коэффициент надежности по назначению
трубопровода (СНиП 2.05.06-85).
Номинальная толщина стенки трубопровода определяется согласно СНиП 2.05.06-85 следующим образом:
.
(5.3)
Если при этом продольные осевые напряжения, определяемые от расчетных нагрузок и воздействий (температурный перепад и внутреннее давление)
(5.4)
будут иметь отрицательное значение
(
),
то величина
корректируется по формуле
, (5.5)
где 1 – коэффициент, учитывающий двухосное напряженное состояние металла труб, определяемый при сжимающих продольных осевых напряжениях ( ) по формуле:
.
(5.6)
Толщина стенки трубопровода, определенная по формулам (5.3) и (5.5), округляется в большую сторону до ближайшей номинальной в соответствии с сортаментом на трубы.
Принятая толщина стенки труб должна быть не менее 1/140 значения наружного диаметра труб, но не менее 3 мм для труб условным диаметром D 200 мм и не менее 4 мм для труб условным диаметром D 200 мм.
Приведенная методика расчёта представляет
собой итерационный процесс, т.к. в
выражение (5.4) для определения
требуется подставить значение ,
уточняемое далее в формуле (5.5), после
чего значение принимаемой по сортаменту
толщины стенки может измениться и
вычисление приходится повторять с новым
значением .
Подземные и наземные (в насыпи) трубопроводы в соответствии со СНиП 2.05.06-85 проверяются на прочность в продольном направлении и на отсутствие пластических деформаций.
Прочность в продольном направлении проверяется по условию
,
(5.7)
где
– соответственно, продольные осевые
напряжения и расчетное сопротивление
металла труб, МПа, определяемые па
формулам (5.4) и (1.1); 2
– коэффициент, учитывающий двухосное
напряженное состояние металла труб,
при растягивающих осевых продольных
напряжениях (
)2
= 1,0, при сжимающих (
)
определяется по формуле:
,
(5.8)
где
– кольцевые напряжения в стене трубы
от расчетного внутреннего давления.
Для предотвращения недопустимых пластических деформаций трубопровода в продольном направлении проверку производят по условию (6.2), а в кольцевом направлении по условию
,
(5.9)
где
– кольцевые напряжения в стенках
трубопровода от нормативного внутреннего
давления, МПа.
Если одно из проверяемых условий не выполняется, следует либо подобрать другую марку стали с лучшими механическими характеристиками, либо увеличить толщину стенки трубы до ближайшей большей по сортаменту, и повторить расчет.