
- •Структура объектов системы нефтепроводного транспорта
- •1. Классификация магистральных нефтепроводов и нефтепродуктопроводов
- •2. Состав сооружений магистральных нефтепроводов и нефтепродуктопроводов
- •Физико-технические свойства нефтей и их поготовка к транспорту
- •3.Состав нефтей и их классификация
- •4. Физико-химические свойства нефтей
- •5. Подготовка нефти к транспорту
- •6. Прием-сдача нефтей определенного качества
- •Насосы для перекачки нефтЕй и нефтепродуктов
- •7. Нефтяные центробежные насосы
- •8. Принцип действия центробежного насоса
- •9. Гидравлические q-h зарактеристики центробежных насосов. Измененение насосных характеристик
- •11. Изменение насосных характеристик
- •12. Привод насоса. Выбор привода
- •13. Теоретический напор, мощность и к.П.Д центробежных насосов, коэффициент быстроходности цбн (основные рабочие параметры)
- •14. Расчет характеристик цбн в зависимости от плотности и вязкости перекачиваемой нефти
- •15. Пересчет характеристик цбн при изменении числа оборотов
- •16. Регулирование подачи цбн
- •17. Работа цбн в группе
- •18. Определение мощности насосов для перекачки нефти
- •Технологический расчет магистральных трубопроводов при стационарном режиме перекачки
- •19. Закон Паскаля
- •20. Уравнение Дарси-Вейсбаха
- •21. Уравнение Бернулли. Определение полного напора в различных сечениях трубопровода
- •22. Исходные данные для технологического расчета
- •23. Расчет параметров транспортируемых нефтей
- •24. Определение коэффициента гидравлического сопротивления внутренней поверхности трубопровода
- •25. Гидравлический уклон. Определение полных потерь давления в трубопроводе
- •26. Уравнение баланса напоров в рельефном трубопроводе
- •27. Потери напора в трубопроводе с лупингами и вставками
- •28. Определение расчетной длины нефтепровода. Перевальная точка
- •29. Характеристики трубопровода, насоса, насосной станции
- •30. Совмещенная характеристика «трубопровод-насос». Рабочая точка
- •31. Подбор насосно-силового оборудования
- •32. Определение необходимого числа насосных станций
- •33. Расстановка нефтеперекачивающих станций по трассе нефтепровода
- •34. Расчет нефтепровода при заданном положении перекачивающих станций
- •35. Расчет коротких трубопроводов
- •36. Изменение подпора перед станциями при изменении вязкости нефти
- •37. Режим работы нефтепровода при отключении нефтеперекачивающих станций
- •38. Нефтепроводы со сбросами и подкачками
- •39. Методы увеличения пропускной способности нефтепровода
- •40. Методы снижения гидравлических потерь
- •42. Регулирование режимов работы трубопроводов изменением параметров трубопроводов дросселированием, байпасированием
- •43. Соотношение диаметров трубопроводов, давления и пропускной способности
- •44. Определение экономически наивыгоднейшего диаметра трубопровода
- •Основные требования к проектированию магистральных нефтепроводов
- •45. Расстояния между трубопроводами при подземной прокладке
- •46. Требования к расстановке запорной арматуры на магистральном нефтепроводе
- •47. Нормативная методика расчета трубопроводов на прочность
- •48. Основные нагрузки и воздействия на нефтепровод
- •49. Расчет толщины стенки трубопровода
- •50. Требования к трубам и марки сталей струб, применяемых при строительстве магистральных нефтепроводов
- •51. Требования к фасонным изделиям и соединительным деталям, применяемым на магистральных нефтепроводах
- •Противокоррозионная защита нефтепроводов и резервуаров
- •52. Классификация коррозионных процессов
- •53. Основные сведения об электрических процессах на поверхности трубопровода, находящегося в почве
- •54. Защитные покрытия нефтепроводов
- •55. Электрохимическая защита нефтепроводов от коррозии
- •56. Расчет длины защищаемого участка при катодной защите мн
- •57. Методы определения состояния коррозионной защиты нефтепроводов
- •58. Противокоррозионная защита резервуаров
- •Эксплуатация линейной части магистральных нефтепроводов
- •59. Утечки нефти из трубопровода и причины их возникновения
- •60. Расчет утечек нефти через отверстия в трубопроводе
- •61. Методы обнаружения утечек нефти из трубопровода
- •62. Определение места утечки по диспетчерским данным
- •63. Истечение нефтепродукта через отверстия в трубопроводах
- •64. Расчет утечек нефтепродукта через отверстия в трубопроводе (см. П.60 Расчет утечек нефти через отверстия в трубопроводе)
- •65. Планирование и расчеты периодических очисток нефтепровода от парафина
- •66. Внеплановая очистка нефтепровода от парафина и водяных скоплений
- •Технологические расчеты нефтепроводов при нустановившихся режимах
- •67. Инерционные свойства потока нефти
- •68. Гидравлический удар в нефтепроводах. Принципы расчета гидравлического удара
- •Перекачка нефтей с аномальными свойствами
- •69. Основные способы перекачки высоковязких и высокозастывающих нефтей и нефтепродуктов
- •70. Реологические свойства нефтей
- •71. Гидротранспорт вязких нефтей и нефтепродуктов
- •72. Перекачка термообработанных нефтей и нефтепродуктов
- •73. Перекачка нефтей с присадками
- •74. Перекачка предварительно подогретых нефтей и нефтепродуктов
- •75. Использование антитурбулентных присадок к нефтепродуктам для снижения потерь напора на трение
- •76. Зависимости основных параметров нефти от концентрации разбавителя
- •77. Вычисление давления насыщенных паров смеси
- •78. Вычисление гидравлических потерь при перекачке с разбавителем
- •79. Гидравлическая характеристика трубопровода при перекачке разбавленной нефти
- •Применение противотурбулентных присадок в трубопроводном транспорте нефти и нефтепродуктов
- •80. Эффект Томса
- •81.Применение противотурбулентных присадок на отечественных нефтепроводах
- •82. Технология ввода присадки в поток в трубопровод
- •83. Механизм действия малых полимерных добавок на поток в трубопроводе
- •107. Классификация нефтебаз
- •108. Номенклатура и основные эксплуатационные характеристики нефтепродуктов, с которыми оперируют нефтебазы
- •109. Физико-химические свойства нефтепродуктов
- •110. Операции, проводимые на нефтебазах
- •111. Объекты нефтебаз и их размещение
- •112. Определение объема резервуарного парка нефтебазы
- •113. Коэффициент оборачиваемости резервуаров
- •114. Резервуары нефтебаз и перекачивающих станций
- •115. Типы резервуаров и их конструкции
- •116. Оптимальные размеры вертикальных стальных резервуаров
- •117. Потери нефти и нефтепродуктов
- •118. Классификация потерь нефти и нефтепродуктов
- •119. Упрощенная теория потерь нефтепродуктов от испарения
- •120. Мероприятия по сокращению потерь от испарения
- •121. Современные средства сокращения потерь бензинов от испарения
27. Потери напора в трубопроводе с лупингами и вставками
Если на каком-либо участке трассы проложен параллельный трубопровод (лупинг) или трубопровод другого диаметра (вставка), гидравлический уклон на нем будет отличаться от гидравлического уклона магистрали.
Найдем соотношения между гидравлическими уклонами лупинга, вставки и магистрали. Будем считать, что режимы движения нефти в них одинаковы.
Рис. 1. Гидравлический уклон на различных участках трубопровода
Пользуясь обозначениями рис. 1, имеем: гидравлический уклон магистрали
,
гидравлический уклон лупингованного участка
.
Учитывая, что
,
получим
, (1)
.
Если Dл = D, то
.
В этом случае при ламинарном режиме
,
при турбулентном режиме в зоне Блазиуса
=
0,297, для квадратичной области
=
0,25.
Аналогично можно вывести для вставки
,
Потеря напора на трение для трубопровода с лупингом будет складываться из потерь напора на одиночном и сдвоенном (лупингованном) участках:
,
где х—длина лупинга.
Учитывая (1), можно также написать, что
.
Полная потеря напора для трубопровода с лупингом
(2)
Для трубопровода со вставкой выражение для потери напора имеет аналогичный вид.
Далее для краткости вместо (2) будем писать
,
имея в виду, что при необходимости всегда
L можно заменить на
или
на
.
Если надо потерю напора выразить в зависимости от Q, то будем пользоваться формулой
,
(3)
или
. (4)
28. Определение расчетной длины нефтепровода. Перевальная точка
Возвышенность на трассе, от которой нефть приходит на конечный пункт нефтепровода самотеком, называется перевальной точкой.
Таких точек может быть несколько (рис.
1). Расстояние от начального пункта
нефтепровода до ближайшей из них
называется расчетной длиной нефтепровода.
При гидравлическом расчете длина нефтепровода принимается равной расчетной, разность отметок — равной превышению перевальной точки над начальным пунктом трассы.
Для нахождения перевальной точки проведем от конечного пункта трассы К, линию гидравлического уклона 1 до пересечения ее с профилем. Затем вычертим параллельную линию 2 с расчетом, чтобы она касалась профиля, нигде его не пересекая. Место касания линии гидравлического уклона 2 с профилем трассы — перевальная точка , определяющая расчетную длину нефтепровода.
Если линия гидравлического уклона, проведенная из конечной точки трассы, нигде не пересекается с профилем и не касается его (на рис. 2 — пунктирная линия), перевальная точка отсутствует и расчетная длина равна полной длине нефтепровода. Рассмотрим движение нефти за перевальной точкой.
В промежутке трассы от перевальной
точки до конечного пункта выделим два
участка:
длиной l1 и АК, длиной l2 (рис. 3). На последнем
из них самотечное движение нефти
обеспечивается раз-
Рис. 1. Совмещенная характеристика трубопровода и насосных станций.
Рис. 2. Перевальная точка и расчетная длина нефтепровода
Рис. 3. Течение нефти за перевальной точкой
ностью высот точек А и К:
.
На участке
,
как видно из чертежа,
на величину
.
Но это противоречит условию баланса
потерянного il1 и активного
напоров. Следовательно, на участке
гидравлический уклон должен быть больше
i. Это возможно только в случае увеличения
скорости движения нефти на участке
.
Из уравнения сплошности
видно, что с увеличением скорости живое
сечение потока F должно уменьшаться.
Следовательно, за перевальной точкой
(до пункта А) нефть движется при частичном
заполнении поперечного сечения
трубопровода. Давление на этом участке
ниже, чем в любой другой точке трубопровода:
оно равно упругости паров перекачиваемой
нефти. Величина
есть мощность, теряемая за перевальной
точкой непроизводительно.