
- •Глава 4.
- •Глава 6.
- •Глава 9.
- •Глава 10.
- •Глава 11.
- •Глава 12.
- •Глава 13.
- •Глава 14.
- •Глава 15.
- •Глава 16
- •Глава 18
- •Глава 1.
- •§ 1. Аксиомы и принципы статики твёрдого тела.
- •§ 2. Момент силы относительно произвольного центра, оси.
- •§ 3. Пара сил и её свойства.
- •§ 4.Главный вектор и главный момент системы сил. Правило Пуансо.
- •§ 5. Приведение системы сил к простейшему виду.
- •§ 6. Уравнения равновесия тела.
- •Глава 2. Центр параллельных сил и центр тяжести.
- •§ 1. Центр параллельных сил.
- •§ 2. Центр тяжести, методы определения координат центра тяжести.
- •Глава 3. Равновесие при наличии сил трения.
- •§ 1. Трение скольжения Угол трения, конус трения.
- •§ 2. Задача об опрокидывании тела. Трение качения.
- •Кинематика
- •Глава 4. Кинематика точки.
- •§ 1. Способы задания движения точки. Уравнения движения точки; траектория.
- •§ 2. Натуральный триэдр траектории.
- •§ 3. Скорость точки.
- •§ 4. Ускорение точки.
- •§ 5. Поступательное движение твердого тела.
- •Глава 5. Вращение твердого тела вокруг неподвижной оси.
- •§ 1 Скорости и ускорения точек твердого тела, вращающегося вокруг неподвижной оси.
- •§ 2. Векторные формулы скорости и ускорения точек тела, вращающегося вокруг неподвижной оси.
- •Глава 6. Кинематика плоского движения твердого тела
- •§ 1. Уравнения плоского движения.
- •§ 2. Скорости точек плоской фигуры.
- •§ 3. Мгновенный центр скоростей плоской фигуры.
- •§ 4. Ускорения точек плоской фигуры.
- •Глава 4. Вращение тела вокруг неподвижной точки. Общий случай движения тела.
- •§ 1. Определение положения твердого тела, имеющего неподвижную точку.
- •§ 2 Углы Эйлера, матрицы поворота.
- •§ 3. Угловая скорость и угловое ускорение твердого тела, имеющего неподвижную точку.
- •§ 4. Скорости и ускорения точек твердого тела, вращающегося вокруг неподвижного центра.
- •Глава 6.
- •§ 5. Определение положения твердого тела в пространстве.
- •§ 6. Скорости и ускорения в общем случае движения твердого тела.
- •Глава 8. .Кинематика относительного движения точки и тела.
- •§ 1. Абсолютное, относительное и переносное движения.
- •§ 2. Теорема о сложении скоростей в относительном движении.
- •§ 3. Сложение ускорений, теорема Кориолиса.
- •§ 4. Сложение вращений твёрдого тела.
- •§ 5. Общий случай движения тела (для скоростей).
- •Динамика точки и твёрдого тела
- •Глава 9. Динамика точки.
- •§ 1. Основные положения и аксиомы динамики
- •§ 2. Дифференциальные уравнения движения материальной точки.
- •§ 3. Динамики относительного движения точки.
- •Глава 10. Количество движения системы.
- •§ 1. Уравнения динамики системы материальных точек и твёрдого тела.
- •§ 2. Теорема об изменении количества движения системы материальных точек.
- •§ 3. Теорема о движении центра масс.
- •Глава 11. Кинетический момент системы и твёрдого тела.
- •§ 1. Теорема об изменении главного момента количества движения системы материальных точек.
- •§ 3. Кинетический момент тела, вращающегося относительно неподвижной точки.
- •§ 3. Момент инерции относительно произвольной оси. Тензор инерции.
- •§ 4. Главные оси инерции и главные моменты инерции.
- •§ 5. Вычисление моментов инерции.
- •§ 6. Преобразование моментов инерции.
- •§ 7. Кинетический момент твердого тела.
- •Глава 12. Дифференциальные уравнения движения твердого тела.
- •§ 1. Дифференциальные уравнения вращения твердого тела.
- •§ 2. Общий случай движения твердого тела.
- •§ 3. Динамика плоско-параллельного движения тела.
- •§ 4. Реакция оси вращающегося тела.
- •§ 5. Задача о физическом маятнике.
- •Глава 13. Кинетическая энергия системы и твёрдого тела.
- •§ 1. Кинетическая энергия системы материальных точек.
- •§ 2. Кинетическая энергия твердого тела.
- •§ 3. Работа силы. Мощность.
- •§ 4. Примеры вычисления потенциальной энергии и работы
- •§ 5. Теорема об изменении кинетической энергии.
- •§ 6. Закон сохранения механической энергии.
- •Динамика несвободной системы. __________________________________________________________Глава 14. Возможные перемещения.
- •§1. Связи, классификация связей, число степеней свободы.
- •§2. Возможные перемещения.
- •§ 3. Принцип освобождаемости. Идеальные связи.
- •§ 4. Статический принцип возможных перемещений.
- •§ 5. Динамический принцип возможных перемещений. Общее уравнение динамики.
- •Глава 15. Уравнение Лагранжа второго рода и его приложения.
- •§ 1. Вывод уравнения Лагранжа второго рода.
- •§ 2. Диссипативная функция.
- •§ 8. Представление кинетической энергии как функции обобщённых скоростей.
- •§ 9. Интеграл энергии.
- •Малые колебания системы с одной степенью свободы.
- •Глава 16 Свободные колебания системы с одной степенью свободы.
- •§ 1. Устойчивость равновесия голономной системы в консервативном силовом поле.
- •§ 2. Малые свободные колебания системы с одной степенью свободы.
- •§ 3. Свободные колебания системы с учётом линейно-вязкого сопротивления.
- •Глава 17.
- •§ 1. Вынужденные колебания без сопротивления. Биения, резонанс.
- •§ 2. Вынужденные колебания системы с учётом линейно-вязкого трения.
- •§ 3. Динамические характеристики вынужденных колебаний.
- •Некоторые задачи статики и динамики точки и твёрдого тела.
- •Некоторые задачи статики и динамики точки и твёрдого тела.
- •Глава 18 Уравнения статики деформируемого твёрдого тела.
- •§ 1. Дифференциальные уравнения равновесия нерастяжимой нити.
- •§ 2. Статика деформируемых прямых стержней.
- •Глава 19. Элементарная теория удара
- •§ 1. Теорема импульсов и её приложения в теории удара.
- •§ 2. Задача Герца о прямом и центральном ударе двух тел.
- •§ 3. Теоремы об изменении количества движения и кинетического момента при ударе.
- •§ 4. Удар, действующий на тело, вращающегося вокруг неподвижной оси.
- •§ 5. Условия отсутствия ударных реакций. Центр удара.
- •1.Статика.
- •2. Кинематика.
- •3. Динамика точки и твердого тела:
- •4. Динамика несвободной системы.
- •5. Колебания системы около положения устойчивого равновесия.
- •Дополнительные вопросы, включаемые по согласованию с выпускающими кафедрами: Динамические характеристики вынужденных колебаний. Нелинейные колебания точки. Метод Ван дер Поля.
- •3. Теорема о движении центра масс.
- •6. Теорема об изменении кинетической энергии.
§ 3. Принцип освобождаемости. Идеальные связи.
Ограничивая свободу движения системы, связи действуют на точки системы посредством сил, называемых реакциями связей. Чтобы не смешивать реакции связей с остальными силами, приложенными к точкам несвободной системы, назовем эти последние силы условно задаваемыми
Можно
сказать, что задаваемыми силами являются
те из сил, приложенных к системе, которые
сохраняются, если связи мгновенно,
исчезнут или, как иногда говорят,
«ослабнут». Прикладывая к точкам
системы с массами
наряду с равнодействующей
задаваемых сил равнодействующую реакций
связей
составим уравнения движения системы
точек:
.
(4.5)
Эти уравнения показывают, что несвободную систему точек можно рассматривать как свободную, движущуюся под действием задаваемых сил и реакций связей. Использование этого положения, именуемого принципом освобождаемости, успешно применялся в статике твердого тела, заменяя опоры их реакциями. В свете учения о связях смысл принципа освобождаемости становится более ясным. Применяя принцип освобождаемости, мы мысленно отбрасываем связи, заменяя их действие динамически эквивалентным действием реакций связей. При этом число степеней свободы системы увеличивается и расширяется многообразие возможных перемещений. Поясним это на следующем простом примере. Тяжелая балка, лежащая на двух опорах (считаем связь удерживающей), не имеет свободы перемещения. Откидывая одну из опор и прикладывая к балке соответствующую опорную реакцию, мы этим не нарушаем равновесия балки, но балка получает свободу перемещения вращения вокруг оставшейся опоры - и может уже рассматриваться как система с одной степенью свободы. Принцип освобождаемости позволяет переводить реакции связей в класс задаваемых сил, что может оказаться полезным при проведении некоторых рассуждений. В случае идеально гладкой поверхности реакция целиком сводится к силе, нормальной к поверхности. Таким образом, если связью служит поверхность без трения, то реакция связи нормальна к связи. В этом случае элементарная работа реакции на любом возможном перемещении точки равна нулю, так как сила направлена перпендикулярно к перемещению. В действительности не существует ни абсолютно гладких, ни абсолютно твердых тел, так что работа реакций на любом возможном перемещении отлична от нуля, но, с другой стороны, во многих практических случаях в первом приближении можно или пренебречь работой сил трения и говорить о «практически» гладких поверхностях, или считать силу трения как заданную силу. Тот факт, что на практике постоянно приходилось встречаться со связями, сумма работ реакций которых на любом возможном перемещении системы может быть в допустимом приближении принята равной нулю, привел к установлению важной механической абстракции идеальных связей.
Идеальными
связями называются такие связи, сумма
элементарных работ реакций которых
на любом возможном перемещении
системы равна нулю. Тогда условие
идеальности связей будет, по предыдущему,
заключаться в равенстве нулю элементарной
работы
реакций связей на возможном перемещении
(4.6)