
- •Глава 4.
- •Глава 6.
- •Глава 9.
- •Глава 10.
- •Глава 11.
- •Глава 12.
- •Глава 13.
- •Глава 14.
- •Глава 15.
- •Глава 16
- •Глава 18
- •Глава 1.
- •§ 1. Аксиомы и принципы статики твёрдого тела.
- •§ 2. Момент силы относительно произвольного центра, оси.
- •§ 3. Пара сил и её свойства.
- •§ 4.Главный вектор и главный момент системы сил. Правило Пуансо.
- •§ 5. Приведение системы сил к простейшему виду.
- •§ 6. Уравнения равновесия тела.
- •Глава 2. Центр параллельных сил и центр тяжести.
- •§ 1. Центр параллельных сил.
- •§ 2. Центр тяжести, методы определения координат центра тяжести.
- •Глава 3. Равновесие при наличии сил трения.
- •§ 1. Трение скольжения Угол трения, конус трения.
- •§ 2. Задача об опрокидывании тела. Трение качения.
- •Кинематика
- •Глава 4. Кинематика точки.
- •§ 1. Способы задания движения точки. Уравнения движения точки; траектория.
- •§ 2. Натуральный триэдр траектории.
- •§ 3. Скорость точки.
- •§ 4. Ускорение точки.
- •§ 5. Поступательное движение твердого тела.
- •Глава 5. Вращение твердого тела вокруг неподвижной оси.
- •§ 1 Скорости и ускорения точек твердого тела, вращающегося вокруг неподвижной оси.
- •§ 2. Векторные формулы скорости и ускорения точек тела, вращающегося вокруг неподвижной оси.
- •Глава 6. Кинематика плоского движения твердого тела
- •§ 1. Уравнения плоского движения.
- •§ 2. Скорости точек плоской фигуры.
- •§ 3. Мгновенный центр скоростей плоской фигуры.
- •§ 4. Ускорения точек плоской фигуры.
- •Глава 4. Вращение тела вокруг неподвижной точки. Общий случай движения тела.
- •§ 1. Определение положения твердого тела, имеющего неподвижную точку.
- •§ 2 Углы Эйлера, матрицы поворота.
- •§ 3. Угловая скорость и угловое ускорение твердого тела, имеющего неподвижную точку.
- •§ 4. Скорости и ускорения точек твердого тела, вращающегося вокруг неподвижного центра.
- •Глава 6.
- •§ 5. Определение положения твердого тела в пространстве.
- •§ 6. Скорости и ускорения в общем случае движения твердого тела.
- •Глава 8. .Кинематика относительного движения точки и тела.
- •§ 1. Абсолютное, относительное и переносное движения.
- •§ 2. Теорема о сложении скоростей в относительном движении.
- •§ 3. Сложение ускорений, теорема Кориолиса.
- •§ 4. Сложение вращений твёрдого тела.
- •§ 5. Общий случай движения тела (для скоростей).
- •Динамика точки и твёрдого тела
- •Глава 9. Динамика точки.
- •§ 1. Основные положения и аксиомы динамики
- •§ 2. Дифференциальные уравнения движения материальной точки.
- •§ 3. Динамики относительного движения точки.
- •Глава 10. Количество движения системы.
- •§ 1. Уравнения динамики системы материальных точек и твёрдого тела.
- •§ 2. Теорема об изменении количества движения системы материальных точек.
- •§ 3. Теорема о движении центра масс.
- •Глава 11. Кинетический момент системы и твёрдого тела.
- •§ 1. Теорема об изменении главного момента количества движения системы материальных точек.
- •§ 3. Кинетический момент тела, вращающегося относительно неподвижной точки.
- •§ 3. Момент инерции относительно произвольной оси. Тензор инерции.
- •§ 4. Главные оси инерции и главные моменты инерции.
- •§ 5. Вычисление моментов инерции.
- •§ 6. Преобразование моментов инерции.
- •§ 7. Кинетический момент твердого тела.
- •Глава 12. Дифференциальные уравнения движения твердого тела.
- •§ 1. Дифференциальные уравнения вращения твердого тела.
- •§ 2. Общий случай движения твердого тела.
- •§ 3. Динамика плоско-параллельного движения тела.
- •§ 4. Реакция оси вращающегося тела.
- •§ 5. Задача о физическом маятнике.
- •Глава 13. Кинетическая энергия системы и твёрдого тела.
- •§ 1. Кинетическая энергия системы материальных точек.
- •§ 2. Кинетическая энергия твердого тела.
- •§ 3. Работа силы. Мощность.
- •§ 4. Примеры вычисления потенциальной энергии и работы
- •§ 5. Теорема об изменении кинетической энергии.
- •§ 6. Закон сохранения механической энергии.
- •Динамика несвободной системы. __________________________________________________________Глава 14. Возможные перемещения.
- •§1. Связи, классификация связей, число степеней свободы.
- •§2. Возможные перемещения.
- •§ 3. Принцип освобождаемости. Идеальные связи.
- •§ 4. Статический принцип возможных перемещений.
- •§ 5. Динамический принцип возможных перемещений. Общее уравнение динамики.
- •Глава 15. Уравнение Лагранжа второго рода и его приложения.
- •§ 1. Вывод уравнения Лагранжа второго рода.
- •§ 2. Диссипативная функция.
- •§ 8. Представление кинетической энергии как функции обобщённых скоростей.
- •§ 9. Интеграл энергии.
- •Малые колебания системы с одной степенью свободы.
- •Глава 16 Свободные колебания системы с одной степенью свободы.
- •§ 1. Устойчивость равновесия голономной системы в консервативном силовом поле.
- •§ 2. Малые свободные колебания системы с одной степенью свободы.
- •§ 3. Свободные колебания системы с учётом линейно-вязкого сопротивления.
- •Глава 17.
- •§ 1. Вынужденные колебания без сопротивления. Биения, резонанс.
- •§ 2. Вынужденные колебания системы с учётом линейно-вязкого трения.
- •§ 3. Динамические характеристики вынужденных колебаний.
- •Некоторые задачи статики и динамики точки и твёрдого тела.
- •Некоторые задачи статики и динамики точки и твёрдого тела.
- •Глава 18 Уравнения статики деформируемого твёрдого тела.
- •§ 1. Дифференциальные уравнения равновесия нерастяжимой нити.
- •§ 2. Статика деформируемых прямых стержней.
- •Глава 19. Элементарная теория удара
- •§ 1. Теорема импульсов и её приложения в теории удара.
- •§ 2. Задача Герца о прямом и центральном ударе двух тел.
- •§ 3. Теоремы об изменении количества движения и кинетического момента при ударе.
- •§ 4. Удар, действующий на тело, вращающегося вокруг неподвижной оси.
- •§ 5. Условия отсутствия ударных реакций. Центр удара.
- •1.Статика.
- •2. Кинематика.
- •3. Динамика точки и твердого тела:
- •4. Динамика несвободной системы.
- •5. Колебания системы около положения устойчивого равновесия.
- •Дополнительные вопросы, включаемые по согласованию с выпускающими кафедрами: Динамические характеристики вынужденных колебаний. Нелинейные колебания точки. Метод Ван дер Поля.
- •3. Теорема о движении центра масс.
- •6. Теорема об изменении кинетической энергии.
§ 3. Скорость точки.
Пусть
за время
точка пройдет по заданной траектории
путь
,
тогда отношение
характеризует среднюю быстроту изменения
пути со временем за интервал
или среднюю скорость движения точки за
этот интервал. Предел средней скорости
за интервал
,
при
,
называется скоростью в данный момент
t
У
словимся
точкой, поставленной над буквой, в
дальнейшем обозначать производную по
времени. Для того, чтобы определить и
направление движения, введём понятие
вектора скорости. Пусть
и
определяют два положения точки на
траектории за промежуток времени
(рис. 22).
Скоростью точки будем называть
или
(2.5)
Вектор скорости точки равен векторной производной вектор-радиуса точки по времени и направлен по касательной к траектории движения точки. Разложим вектор-радиус по соответствующим осям декартовой системы координат
.
Дифференцируя обе части этого равенства по времени и учитывая, что орты постоянны по величине и направлению будем иметь
,
что позволяет записать
.
(2.6)
Модуль
скорости равен
§ 4. Ускорение точки.
В
общем случае движение точки происходит
с переменной по величине и по направлению
скоростью. Желая охарактеризовать
изменение скорости, вводят меру быстроты
этого изменения со временем — ускорение,
которое должно учитывать векторное
(геометрическое) изменение скорости,
т. е. изменение ее по величине и по
направлению. Для этого рассмотрим (как
и для скорости) два значения скорости
в моменты времени
,
и определим ускорение как
(2.6)
Если радиус – вектор представлен разложением по ортам декартовой системы координат
, тогда
и
.
Модуль ускорения равен
.
Считая
координатами точки N
– конца вектора
,
можно рассматривать вектор скорости,
согласно (2.5), как скорость конца вектора
,
а считая
-
координатами точки М
– конца вектора
,
можно рассматривать вектор ускорения,
как скорость конца вектора
.
Применяя полученные выражения единичных
вектором осей натурального триэдра
траектории, найдем составляющие вектора
ускорения по этим осям. Вспомнив, что
вектор ускорения есть производная по
времени от вектора скорости, получим
,
но
,
откуда следует
(2.7)
Равенство
(2.7) представляет собой разложение
вектора ускорения по осям натурального
триэдра. Обозначив коэффициенты при
единичных векторах,
и записав проекции ускорения на оси
натурального триэдра, соответственно
через
будем иметь:
причем из (2.7) следует, что
Последнее
равенство говорит о том, что вектор
ускорения перпендикулярен к бинормали,
т. е. ускорение лежит в соприкасающейся
плоскости. Первое слагаемое в разложении
(2.7) -
дает касательную (тангенциальную)
составляющую ускорения, второе
-
нормальную составляющую ускорения.
Иногда для краткос
ти
их называют просто касательным и
нормальным ускорением. В случае
ускоренного движения знаки
и
одинаковы, в случае замедленного движения
- противоположны, т. е. при ускоренном
движении касательное ускорение направлено
в ту же сторону, что и вектор скорости,
а при замедленном движении имеет
направление, противоположное скорости
(рис. 23).
Итак, вектор ускорения в криволинейном движении может быть представлен как геометрическая сумма двух ускорений: касательного и нормального. Величина ускорения может быть представлена так:
Рассмотрим два частных случая:
а)
Случай равномерного движения; величина
скорости постоянна, так что
,
и величина
ускорения равна в этом случае
б)
Случай прямолинейного движения; кривизна
прямой линии равна нулю и, следовательно,
,
и
.
Из сопоставления этих двух случаев следует, что в равномерном прямолинейном движении ускорение равно нулю.
Отметим,
что не следует смешивать
и
так как первое выражение определяет
величину полного ускорения, а второе -
абсолютное значение лишь одной его
касательной составляющей. На различие
этих величин указывалось уже выше
(формула (2.2)). Разложение ускорения на
касательную и нормальную части имеет
простое кинематическое значение. Вектор
ускорения, определяющий быстроту
изменения вектора скорости по величине
и направлению, представляется суммой
касательного ускорения, характеризующего
изменение величины скорости, и нормального,
характеризующего изменение ее по
направлению.