 
        
        - •1. Наука про дослідження операцій та прийняття рішень як середовище формування економіко-математичного моделювання
- •2. Моделювання та прогнозування
- •3. Типізація економіко-математичних моделей
- •1.1. Наука про дослідження операцій та прийняття рішень як середовище формування економіко-математичного моделювання
- •1.2. Моделювання та прогнозування
- •1.3. Типізація економіко-математичних моделей
- •Тема 2. Принципи та етапи побудови економіко-математичної моделі
- •1. Концепція побудови економіко-математичної моделі. Постановка проблеми та визначення задачі моделювання
- •2. Визначення методів моделювання і вибір математичної моделі
- •3. Числовий розв’язок моделі і оцінка його результатів. Взаємозв’язок етапів моделювання
- •2.1. Концепція побудови економіко-математичної моделі. Постановка проблеми та визначення задачі моделювання
- •2.2. Визначення методів моделювання і вибір математичної моделі
- •2.3. Числовий розв’язок моделі і оцінка його результатів. Взаємозв’язок етапів моделювання
- •Тема 3. Використовування детермінованих статичних моделей в економічних дослідженнях
- •3.1. Моделі виявлення проблем і причинно-наслідкових зв'язків в економічних дослідженнях
- •3.2. Оптимізаційне моделювання в статичних задачах економіки
- •3.3. Моделі ухвалення рішень на основі теорії пріоритетів і ієрархій
- •3.1. Моделі виявлення проблем і причинно-наслідкових зв'язків в економічних дослідженнях
- •3.2. Оптимізаційне моделювання в статичних задачах економіки
- •3.3. Моделі ухвалення рішень на основі теорії пріоритетів і ієрархій
- •Тема 4. Застосування статичних стохастичних моделей в задачах економічного аналізу і ухвалення рішень
- •4.1. Модель дерева вірогідності в мережевому моделюванні. Древо рішень
- •4.1. Модель дерева вірогідності в мережевому моделюванні. Древо рішень
- •4.2. Кореляційно-регрісійний аналіз
- •Багатофакторний кореляційно - регресійний аналіз
	
МІНІСТЕРСТВО ОСВІТИ І НАУКИ, МОЛОДІ ТА СПОРТУ УКРАЇНИ
ДВНЗ «ПРИДНІПРОВСЬКА ДЕРЖАВНА АКАДЕМІЯ
БУДІВНИЦТВА ТА АРХІТЕКТУРИ»
КАФЕДРА МІЖДНАРОДНОЇ ЕКОНОМІКИ
МЕТОДИЧНИЙ МАТЕРІАЛ
ДО ВИВЧЕННЯ ДИСЦИПЛІНИ
«МАТЕМАТИЧНІ МОДЕЛІ В ЕКОНОМІЦІ»
ДЛЯ СТУДЕНТІВ СПЕЦІАЛЬНОСТІ 7.050103
«МІЖНАРОДНА ЕКОНОМІКА»
ДНІПРОПЕТРОВСЬК
2012
Зміст
1.1. Наука про дослідження операцій та прийняття рішень як середовище формування економіко-математичного моделювання 2
1.2. Моделювання та прогнозування 4
1.3. Типізація економіко-математичних моделей 4
Тема 2. Принципи та етапи побудови економіко-математичної моделі 7
2.1. Концепція побудови економіко-математичної моделі. Постановка проблеми та визначення задачі моделювання 7
2.2. Визначення методів моделювання і вибір математичної моделі 8
2.3. Числовий розв’язок моделі і оцінка його результатів. Взаємозв’язок етапів моделювання 8
Тема 3. Використовування детермінованих статичних моделей в економічних дослідженнях 10
3.1. Моделі виявлення проблем і причинно-наслідкових зв'язків в економічних дослідженнях 10
3.2. Оптимізаційне моделювання в статичних задачах економіки 12
3.3. Моделі ухвалення рішень на основі теорії пріоритетів і ієрархій 13
Тема 4. Застосування статичних стохастичних моделей в задачах економічного аналізу і ухвалення рішень 15
4.1. Модель дерева вірогідності в мережевому моделюванні. Древо рішень 15
4.2. Кореляційно-регрісійний аналіз 17
Тема 1. Моделювання в науковому середовищі дослідження операцій
1. Наука про дослідження операцій та прийняття рішень як середовище формування економіко-математичного моделювання
2. Моделювання та прогнозування
3. Типізація економіко-математичних моделей
1.1. Наука про дослідження операцій та прийняття рішень як середовище формування економіко-математичного моделювання
У наш час спостерігається бурхливе зростання математичних методів у всіх областях практики: замість того, щоб пробувати і помилятися по відношенню до реальних об'єктів, люди вважають за краще робити це на моделях.
Наука дослідження операцій - OR\MS (operation research\management science) – це наука про попереднє обґрунтування розумних рішень у всіх областях цілеспрямованої людської діяльності, широко використовуючи математичний апарат, але що не зводиться до нього; наука, що займає проміжне положення між науками точними, досвідченими і гуманітарними.
Дослідження операцій є застосуванням наукового методу до складних проблем, що виникають в управлінні.
Його характерною особливістю є побудова для відповідної системи наукової моделі, що включає чинники вірогідності і ризику, за допомогою яких можна розрахувати і порівняти результати різних рішень, стратегій і методів управління.
У таблиці приведені деякі дані про використовування математичних підходів, методів і моделей в задачах управління 125 найбільшими корпораціями США.
- 
	Метод, модель Частота використання, % корпорацій Рідко Посередньо Постійно Статистичний аналіз 2 38 60 Імітаційне моделювання 13 53 34 Сетевое планирование 26 53 21 Лінійне програмування 26 60 14 Теорія черг 40 50 10 Нелінійне програмування 53 39 8 Динамічне програмування 61 34 5 Теорія ігр 69 27 4 
В цілому, модель - це матеріальний або в думках представляється об'єкт, який в процесі дослідження заміщає об'єкт-оригінал так, що його безпосереднє вивчення дає нові знання про об'єкт-оригінал.
Моделювання - це процес побудови, вивчення і застосування моделей.
Головна особливість моделювання в науці полягає у тому, що це метод опосередкованого пізнання за допомогою об'єктів-заступників.
Ідея представлення деякого об'єкту, системи або поняття за допомогою моделі носить такий загальний характер, що дати повну класифікацію всіх функцій моделі скрутно. Розрізняють принаймні п'ять узаконених і стали звичними випадків застосування моделей в якості:
- засоби осмислення дійсності; 
- засоби спілкування; 
- засобу бученія і тренажу; 
- інструменту прогнозування; 
- засоби постановки експериментів. 
Всі ці застосування моделей утворюють дихотомію. Іншими словами, модель може служити для досягнення однієї з двох основних цілей: або описової, якщо модель служить для пояснення і (або) кращого розуміння об'єкту, або приписуючої, коли модель дозволяє передбачити і (або) відтворити характеристики об'єкту, що визначають його поведінку. Модель приписуючого типу звичайно є і описовою, але не навпаки.
Взаємозв’язок дихотомічних цілей моделей
 
Я йце
вцілому
йце
вцілому
Приписуюча функція
 
Описуюча
  функція
                                                       функція
ядро,
ж овток
овток
Критерії, яким повинна задовольняти хороша модель. Така модель повинна бути:
- простою і зрозумілою користувачу; 
- цілеспрямованою; 
- надійною в значенні гарантії від абсурдних відповідей; 
- зручною в управлінні і обігу, тобто спілкування з нею повинне бути легким; 
- повною з погляду можливостей рішення головних задач; 
- адаптивною, дозволяючою легко переходити до інших модифікацій або обновляти дані; 
- допускаючою поступові зміни в тому значенні, що, будучи спочатку простою, вона може у взаємодії з користувачем ставати все більш складною. 
