Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
6_Неопределённый интеграл.doc
Скачиваний:
11
Добавлен:
14.11.2019
Размер:
742.4 Кб
Скачать

122

6. Неопределённый интеграл.

6.1. Первообразная и неопределенный интеграл.

Определение. Функция F(x) называется первообразной функцией функции f(x) на отрезке [a, b], если в любой точке этого отрезка верно равенство:

F(x) = f(x).

Надо отметить, что число первообразных для одной и той же функции может быть бесконечно много. Они будут отличаться друг от друга на некоторое постоянное число.

F1(x) = F2(x) + C.

Определение. Неопределенным интегралом функции f(x) называется совокупность первообразных функций, которые определены соотношением

F(x) + C.

Обозначение неопределённого интеграла -

. (6.1)

Здесь функция f(x) называется подынтегральной, f(x)dx –подынтегральным выражением, х – переменной интегрирования, - обозначение операции интегрирования(оператор интегрирования)

Условием существования неопределенного интеграла на некотором отрезке является непрерывность функции на этом отрезке.

Свойства неопределённого интеграла

  1. где u, v, w – некоторые функции от х.

Пример:

Нахождение значения неопределенного интеграла связано главным образом с нахождением первообразной функции. Для некоторых функций такая задача оказывается сложной, либо невозможной. В последнем случае имеется в виду, что первообразная функция не является элементарной. Ниже будут рассмотрены способы нахождения неопределенных интегралов для основных классов функций – рациональных, иррациональных, тригонометрических, показательных и др.

Таблица основных неопределённых интегралов

Из определения первообразной функции следует, что интегрирование есть операция, обратная дифференцированию. Поэтому проверка правильности выполнения интегрировании я нужно продифференцировать результат и получить при этом подынтегральную функцию. Для удобства проведения интегрирования ниже приводится таблица основных неопределённых интегралов.

Таблица интегралов

Интеграл

Значение

Интеграл

Значение

1

-lncosx+C

9

ex + C

2

lnsinx+ C

10

sinx + C

3

11

-cosx + C

4

12

tgx + C

5

13

-ctgx + C

6

ln

14

arcsin + C

7

15

8

16

Интегралы этой таблицы принято называть табличными.

Если операции дифференцирования не выводит нас из области элементарных функций, т.е. результат дифференцирования также является элементарной функцией. С операцией интегрирования дело обстоит иначе: интегралы от некоторых элементарных функций уже не являются элементарными функциями. Приведём примеры некоторых из них:

- интеграл Пуассона (интеграл ошибок) ;

- интегральный логарифм;

- интегральный синус.

Приведенные интегралы принято называть «неберущимися». Каждый из этих интегралов не является элементарной функцией, однако они имеют большое значение в прикладной математике.