Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
производные_эл1.doc
Скачиваний:
12
Добавлен:
13.11.2019
Размер:
10.08 Mб
Скачать

10. Промежутки монотонности функции. Экстремумы функции.

Условие монотонности функции:

Для того, чтобы дифференцируемая на функция не возрастала, необходимо и достаточно, чтобы во всех точках, принадлежащих ее производная была неположительна .

(36)

Для того, чтобы дифференцируемая на функция не убывала, необходимо и достаточно, чтобы во всех точках, принадлежащих ее производная была неотрицательна.

(37)

Промежутки, на которых производная функции сохраняет определенный знак, называются промежутками монотонности функции

Пример 19

Найти промежутки монотонности функции .

Решение:

Найдем производную функции .

Найдем промежутки знакопостоянства полученной производной. Для этого

разложим полученный квадратный трехчлен на множители:

.

Исследуем знак полученного выражения, используя метод интервалов.

Таким образом, получаем согласно (36), (37),что заданная функция возрастает на и убывает на .

Ответ: Заданная функция возрастает на и убывает на .

Определение Функция имеет в точке локальный максимум (минимум), если существует такая окрестность точки , что для всех выполняется условие

( ).

Локальный минимум или максимум функции называется локальным экстремумом.

Необходимое условие существования экстремума.

Пусть функция определена в некоторой окрестности точки . Если функция имеет в точке экстремум, то производная в точке либо равна нулю, либо не существует.

Точка называется критической точкой функции , если производная в точке либо равна нулю, либо не существует.

Достаточные условия наличия экстремума в критической точке .

Пусть точка является критической.

Первое достаточное условие экстремума:

Пусть функция непрерывна в некоторой окрестности точки и дифференцируема в каждой точке .

Точка является точкой локального максимума, если при переходе через

производная функции меняет знак с плюса на минус.

Точка является локальным минимумом, если при переходе через

производная функции меняет знак с минуса на плюс.

Пример 20

Найти экстремумы функции .

Решение:

Найдем производную заданной функции

Приравнивая в полученной производной к нулю числитель и знаменатель, найдем критические точки:

Исследуем знак производной, используя метод интервалов.

Из рисунка видно, что при переходе через точку производная меняет знак с плюса на минус. Следовательно, в точке - локальный максимум.

При переходе через точку производная меняет знак с минуса на плюс.

Следовательно, в точке - локальный минимум.

При переходе через точку производная не меняет знак. Следовательно, критическая точка не является экстремумом заданной функции.

Ответ: - локальный максимум, - локальный минимум.

Второе достаточное условие экстремума:

Если первые производные функции в точке равны нулю, а -ная производная функции в точке отлична от нуля, то точка является точкой экстремума функции , причем,

если

, (38)

то - точка локального минимума

если

, (39)

то - точка локального максимума.

Пример 21

Найти экстремумы функции, пользуясь второй производной .

Решение:

ОДЗ: .

Найдем первую производную заданной функции

Найдем критические точки функции:

Точку мы не рассматриваем, так как функция определена только в левой окрестности .

Найдем вторую производную

Находим

Таким образом, на основании (39) делаем вывод о том, что при - локальный максимум.

Ответ: - локальный максимум.

Задания 8.

Исследовать на возростание и убывание функции:

1.

2.

3.

4.

5.

6.

Исследовать на экстремумы функции:

7.

8.

9.

10.