
- •Предисловие:
- •1. Общие положения
- •1.1. Основные определения
- •1.2. Величины электрической цепи
- •1.3. Параметры электрической цепи
- •1.4. Элементы электрической цепи
- •1.5. Схемы замещения
- •2. Цепи постоянного тока
- •2.1. Передача мощности от источника к нагрузке
- •2.2. Смешанное соединение приемников
- •2.3. Применение законов Кирхгофа
- •2.4. Метод суперпозиции
- •2.5. Метод узлового напряжения
- •2.6. Метод эквивалентных преобразований
- •2.7. Метод контурных токов
- •2.8. Построение потенциальных диаграмм
- •3. Нелинейные цепи
- •3.1. Общие определения
- •3.2. Графический метод расчета
- •3.3. Аналитический метод расчета
- •4. Цепи синусоидального тока
- •4.1. Основные определения
- •4.2. Действующие значения синусоидальных величин
- •4.3. Метод векторных диаграмм
- •4.4. Символический метод
- •4.5. Активное сопротивление в цепи синусоидального тока
- •4.6. Индуктивность в цепи переменного тока
- •4.7. Емкость в цепи синусоидального тока
- •4.8. Неразветвленные цепи
- •4.9. Разветвленные электрические цепи
- •4.10. Треугольники сопротивлений
- •4.11. Мощность цепи синусоидального тока
- •4.12. Коэффициент мощности.
- •4.13. Явления резонанса
- •4.14. Четырехполюсники
- •5. Трехфазные электрические цепи
- •5.1. Основные положения
- •5.2. Соединение звездой
- •5.3. Соединение треугольником
- •5.4. Мощность трехфазной системы
- •5.5. Переключение нагрузки со звезды на треугольник и наоборот
- •5.6. Расчет симметричных трехфазных систем
- •5.7. Расчет несимметричных систем
- •6. Переходные процессы
- •6.1. Основные положения
- •6.2. Переходные процессы в цепях постоянного
- •6.3. Переходные процессы е цепях постоянного
- •6.4. Принужденные и свободные составляющие
- •6.5. Переходные процессы в цепях
- •6.6. Переходные процессы в цепях синусоидального тока с емкостью
- •7. Магнитные цепи с постоянной магнитодвижущей силой
- •7.1. Основные понятия
- •7.2. Законы электромагнетизма
- •7.3. Ферромагнетики
- •7.4. Энергия магнитного поля
- •7.5. Взаимная индуктивность
- •7.6. Расчет однородных магнитных цепей
- •7.7. Расчет неоднородных магнитных цепей
- •7.8. Расчет подъемной силы электромагнита
- •8. Магнитные цепи с переменной магнитодвижущей силой
- •3.1. Основные понятия
- •8.2. Переменный поток и ток в катушке
- •8 .3. Магнитный поток рассеяния
- •8.4. Векторная диаграмма катушки с сердечником
- •8.5. Потери в стали при переменном
- •9. Трансформаторы
- •9.1. Назначение и принцип работы
- •9.2. Нерабочий (холостой) ход
- •9.3. Режим нагрузки
- •10.13. Регулирование скорости вращения ротора
- •10.14. Пуск асинхронного двигателя
- •10.15. Асинхронный генератор
- •10.16. Электромагнитный тормоз
- •10.17. Однофазные асинхронные двигатели
- •10.18. Двухфазные асинхронные двигатели
- •10.19. Фазовращатель
- •10.20. Асинхронный преобразователь частоты
- •10.21. Индукционный регулятор
- •11. Синхронные машины
- •11.1. Устройство и принцип работы синхронной машины
- •11.2. Холостой ход синхронного генератора
- •11.3. Реакция якоря синхронной машины
- •11.4. Электромагнитный момент и угловая характеристика машины
- •11.5. Векторная диаграмма синхронного генератора
- •1.1.6. Характеристики синхронных генераторов
- •11.8. Параллельная работа синхронных генераторов
- •11.9. Бесконтактные синхронные генераторы
- •11.10. Характеристики синхронных двигателей
- •11.11. Пуск синхронного двигателя
- •11.12. Синхронные компенсаторы
- •11.13. Потери и кпд синхронной машины
- •11.14. Преимущества и недостатки синхронной машины
- •12.1. Устройство и принцип работы
- •Если в рамке протекает ток и рамка находится в магнитном поле, то по закону электромагнитной силы
- •12.2. Электродвижущая сила
- •12.3. Электромагнитный момент
- •12.4. Реакция якоря
- •12.5. Коммутация
- •12.6. Возбуждение машин постоянного тока
- •12.7. Генераторы независимого возбуждения
- •12.8. Самовозбуждение генераторов
- •У читывая, что
- •Можно получить зависимость
- •12.9. Генераторы с самовозбуждением
- •У равнение генератора
- •12.10. Двигатели независимого и параллельного возбуждения
- •Двигатели последовательного возбуждения
- •Двигатели смешанного возбуждения
- •12.13. Регулирование скорости вращения якоря
- •12.14. Потери в машинах постоянного тока
- •Таким образом, кпд можно определить как
- •12.15. Коллекторные машины переменного тока
- •Действующее значение трансформаторной эдс
- •Условием линейной коммутации будет
- •13.1. Классификация и назначение
- •13.2. Коллекторные микромашины постоянного тока
- •13.3. Асинхронные микромашины
- •13.4. Синхронные микромашины
- •14. Электропривод и электроснабжение
- •14.1. Основные определения
- •14.6. Электроснабжение
- •15. Электроизмерительные приборы и электроизмерения
- •15.1. Классификация электроизмерительных приборов
- •15.4. Измерение коэффициента мощности, последовательности чередования и сдвига фаз, частоты
- •15.5. Измерение параметров электрической цепи
- •15.6. Погрешности измерения и приборов
- •16. Понятия о полупроводниковой технике
- •16.1. Основные положения
- •16.2. Полупроводниковые диоды
- •16.3. Тиристоры
- •16.4. Вторичные источники электропитания
- •16.5. Выпрямители
- •16.6. Сглаживающие фильтры
- •16.7. Стабилизаторы
- •16.8. Биполярные транзисторы
- •16.9. Усилители электрических сигналов
- •16.10. Характеристики и параметры транзисторов
- •16.11. Полевые транзисторы
- •16.12. Усилители постоянного тока
- •16.13. Генераторы гармонических сигналов
- •16.14. Импульсные устройства (основные понятия)
- •16.16. Дифференцирующие и интегрирующие цепи, линии задержки
- •16.17. Триггеры
- •Приложения
- •Безопасное электрическое напряжение
- •Литература
3.3. Аналитический метод расчета
3.3.1. Вольт-амперные характеристики иногда удается аппроксимировать аналитическими выражениями. Это дает возможность описать электрическое состояние нелинейной цепи математическими уравнениями. Решение таких систем часто является очень трудным.
3.3.2. Отдельные участки вольт-амперной характеристики можно рассматривать как линейные (рис. 3.8). Каждый нелинейный элемент имеет как статическое, так и динамическое сопротивление. Статическое сопротивление (рис. 3.9) вообще определяется по закону Ома, т. е.
Динамическое сопротивление определяется выражением
3.3.3. Для аналитического расчета вольт-амперная характеристика разделяется на линейные участки. На этих участках цепь рассчитывается как линейная, имеющая сопротивление
4. Цепи синусоидального тока
4.1. Основные определения
4.1.1. Как источники питания в технике используются машинные и безмашинные преобразователи электрической энергии. Генераторы переменного тока проще в изготовлении, надежнее и дешевле, чем генераторы постоянного тока. Они не имеют коллектора, который требует постоянного регулирования и специального обслуживания. Часто применяются очень простые и надежные двигатели переменного тока, в особенности асинхронные двигатели.
4.1.2. Использование электрических цепей переменного синусоидального тока на борту летательного аппарата обеспечивает стабилизированную частоту вращения приводов приборов и агрегатов. Используя электрический ток повышенной частоты, можно получить очень большие скорости вращения и намного уменьшить массу и габариты основных элементов электрооборудования. Еще одним преимуществом цепей переменного тока является возможность его трансформирования.
4.1.3. Мгновенные значения синусоидальных величин определяются такими формулами:
где
—
амплитуды тока, ЭДС и напряжения;
— угловая частота;
— фазовый угол;
— начальные фазы
тока, ЭДС и напряжения.
Угловая частота связана с линейной соотношением
а
период
4.2. Действующие значения синусоидальных величин
4.2.1. Для характеристики теплового и электродинамического действия синусоидального тока вводят понятие действующего значения синусоидального тока.
Действующим значением синусоидального тока является значение такого постоянного тока, который вырабатывает эквивалентное переменному тепловое или механическое действие.
Тепловое действие постоянного тока за время одного периода
За это же время в том же сопротивлении переменный ток действующего значения вырабатывает то же количество тепла, т. е.
В таком случае действующее значение переменного тока можно определить из соотношения
т. е.
Действующее
значение синусоидальной величины
является среднеквадратичным з
начением
этой величины за период. Если ток
изменяется по синусоиде, т. е.
то
С
учетом того, что
4..2.2. Действующее значение синусоидальной величины в раз меньше, чем ее амплитудное значение
4.2.3. Первый и второй законы Кирхгофа справедливы для мгновенных значений токов и ЭДС, т. е.