Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2012 - Курсовой - ф-тех процессы.doc
Скачиваний:
5
Добавлен:
12.11.2019
Размер:
1.12 Mб
Скачать

Список литературы

  1. СНиП 23-01-99. Строительная климатология.

  2. СНиП 23-02-2003. Тепловая защита зданий.

  3. СП 23-101-2004. Проектирование тепловой защиты зданий.

  4. Рекомендации по проектированию навесных фасадных систем с вентилируемым воздушным зазором для нового строительства и реконструкции зданий / Москомархитектура, 2002.

  5. Фокин К.Ф. Строительная теплотехника ограждающих частей зданий: Учебник. – М.: Стройиздат, 1973. – 287 с.

  6. Ильинский В.М. Строительная теплофизика (ограждающие конструкции и микроклимат зданий): Учеб. пособие. – М.: Высш. шк., 1974. – 320 с.

  7. Соловьев А.К. Физика среды: Учебник. – М.: Изд-во АСВ, 2008. – 344 с.

Приложение 1. Справочные данные Определение значений температур по толщине ограждающей конструкции (к рис. 2.2)

  • По оси абсцисс в выбранном масштабе откладываем (рис. 2.2,а) последовательно термические сопротивления Ri всех слоев конструкции, а также внутреннего и наружного пограничных слоев воздуха (из табл. 2.2).

  • По вертикали на внешних границах воздушных слоев в принятом масштабе откладываются значения температур внутреннего tint и наружного (из табл. 1.2) воздуха: для зимнего (text,2), летнего (text,4), весеннего (text,3) или осеннего (text,1) периодов года.

  • Строятся температурные графики для выбранных периодов года (в условиях стационарной теплопередачи графики – прямые линии).

  • Найденные значения температур в каждом сечении с рис. 2.2,а переносим на разрез конструкции, выполненный в масштабе реальных толщин (рис. 2.2,б).

Проверка возможности конденсации влаги внутри конструкции (к рис. 2.3)

  • По оси абсцисс в выбранном масштабе откладываем последовательно сопротивления паропроницанию всех слоёв конструкции Rvp,i (рис. 2.3,а); с рис. 2.2 переносим отмеченные ранее сечения с сохранением их нумерации.

  • По оси ординат в выбранном масштабе откладываем со стороны внутренней поверхности значение eint, а со стороны наружной поверхности – среднее значение парциального давления водяного пара за зимний период eext2, и соединяем их прямой линией (пунктирная линия). Полученная прямая представляет собой график изменения парциального давления водяного пара в ограждающей конструкции без учета возможной конденсации при установившемся процессе диффузии водяного пара.

  • По данным табл. 2.3 для зимнего периода строим график изменения давления насыщенного водяного пара Е (тонкая линия).

  • Проводим анализ взаимного расположения графиков Е и e: если графики не пересекаются, то конденсация водяного пара в ограждении отсутствует; в случае пересечения или касания графиков в конструкции возможна конденсация влаги.

  • Если конденсация влаги отсутствует, влажностный режим ограждающей конструкции считается удовлетворительным, и далее расчёт не проводится.

  • В случае конденсации влаги (зимой) определяется плоскость или зона конденсации, для этого из концов прямой eint - eext,2 проводятся касательные к графику Е. Область между точками касания Ек' и Ек"зона конденсации. При совпадении точек касания получается плоскость конденсации. Затем проводится итоговый график изменения парциального давления с учетом конденсации водяного пара (жирная линия).

  • Аналогичные построения можно выполнить для остальных периодов года.

  • На графике Е для периода испарения влаги (рис. 2.3,б) отмечаем границы зоны (плоскость), где происходила конденсация влаги, и соединяем их прямыми с точками eint и eext,4. Стрелками показываем направление движения влаги от зоны конденсации (в сторону уменьшения парциального давления водяного пара).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]