Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
085953_5D0E6_lekcii_kompyuternaya_grafika_dlya_...doc
Скачиваний:
13
Добавлен:
11.11.2019
Размер:
599.04 Кб
Скачать

Достоинства растровой графики

Растровая графика эффективно представляет реальные образы. Реальный мир состоит из миллиардов мельчайших объектов и человеческий глаз как раз приспособлен для восприятия огромного набора дискретных элементов, образующих предметы. На своем высшем уровне качества - изображение выглядят вполне реально подобно тому, как выглядят фотографии в сравнении с рисунками. Это верно только для очень детализированных изображений, обычно получаемых сканированием фотографий. Помимо естественного вида растровые изображения имеют другие преимущества. Устройства вывода, такие как лазерные принтеры, для создания изображений используют наборы точек. Растровые изображения могут быть очень легко распечатаны на таких принтерах, потому что компьютерам легко управлять устройством вывода для представления отдельных пикселов с помощью точек.

Недостатки растровой графики

Как уже говорилось, растровые изображения занимают большое количество памяти. Существует так же проблема редактирования растровых изображений, так как большие растровые изображения занимают значительные массивы памяти, то для обеспечения работы функций редактирования таких изображений потребляются так же значительные массивы памяти и другие ресурсы компьютера.

Векторная графика

В отличие от растровой графики в векторной графике изображение строится с помощью математических описаний объектов, окружностей и линий. Хотя на первый взгляд это может показаться сложнее, чем использование растровых массивов, но для некоторых видов изображений использование математических описаний является более простым способом.

Ключевым моментом векторной графики является то, что она использует комбинацию компьютерных команд и математических формул для объекта. Это позволяет компьютерным устройствам вычислять и помещать в нужном месте реальные точки при рисовании этих объектов. Такая особенность векторной графики дает ей ряд преимуществ перед растровой графикой, но в тоже время является причиной ее недостатков. Векторную графику часто называют объектно-ориентированной графикой или чертежной графикой.

Простые объекты, такие как окружности, линии, сферы, кубы и тому подобное называется примитивами, и используются при создании более сложных объектов. В векторной графике объекты создаются путем комбинации различных объектов. Для создания объектов примитивов используются простые описания. Прямая линия, дуги, окружности, эллипсы и области однотонного или изменяющегося света - это двухмерные рисунки, используемые для создания детализированных изображений. В трехмерной компьютерной графике для создания сложных рисунков могут использоваться такие элементы как сферы, кубы. Команды, описывающие векторные объекты большинству пользователей возможно никогда не придется увидеть. Определять, как описывать объекты будет компьютерная программа, которая используется для подготовки векторных объектов. Для создания векторных рисунков необходимо использовать один из многочисленных иллюстрационных пакетов.

Достоинство векторной графики в том, что описание является простым и занимает мало памяти компьютера. Однако недостатком является то, что детальный векторный объект может оказаться слишком сложным, он может напечататься не в том виде, в каком ожидает пользователь или не напечатается вообще, если принтер неправильно интерпретирует или не понимает векторные команды.

Программы векторной графики способны создавать растровые изображения в качестве одного из типов объектов. Это возможно потому, что растровый рисунок просто набор инструкций для компьютера, и так как инструкции эти очень просты, то векторная графика способна воспринимать растровые изображения наравне с остальными объектами, хотя можно поместить растровые изображения в виде объекта векторном формате, но не удается отредактировать и изменить в нем отдельные пикселы.

Линия – элементарный объект векторной графики. Как и любой объект, линия обладает свойствами: формой (прямая, кривая), толщиной, цветом, начертанием (сплошная, пунктирная). Линия описывается математически как единый объект, и потому объем данных для отображения объекта средствами векторной графики существенно меньше, чем в растровой графике.

Замкнутые линии приобретают свойство заполнения. Охватываемое ими пространство может быть заполнено другими объектами (текстуры, карты) или выбранным цветом. Простейшая незамкнутая линия ограничена двумя точками, именуемыми узлами. Узлы также имеют свойства, параметры которых влияют на форму конца линии и характер сопряжения с другими объектами. Все прочие объекты векторной графики составляются из линий. Например, куб можно составить из шести связанных прямоугольников, каждый из которых, в свою очередь, образован четырьмя связанными линиями. Возможно, представить куб и как двенадцать связанных линий, образующих ребра.

Математические основы векторной графики

Рассмотрим подробнее способы представления различных объектов в векторной графике.

Точка. Этот объект на плоскости представляется двумя числами (х, у), указывающими его положение относительно начала координат.

Объекты векторной графики

Прямая линия. Ей соответствует уравнение y=kx+b. Указав параметры k и b, всегда можно отобразить бесконечную прямую линию в известной системе координат, то есть для задания прямой достаточно двух параметров.

Отрезок прямой. Он отличается тем, что требует для описания еще двух параметров – например, координат x1 и х2 начала и конца отрезка.

Кривая второго порядка. К этому классу кривых относятся параболы, гиперболы, эллипсы, окружности, то есть все линии, уравнения которых содержат степени не выше второй. Кривая второго порядка не имеет точек перегиба. Прямые линии являются всего лишь частным случаем кривых второго порядка. Формула кривой второго порядка в общем виде может выглядеть, например, так:

x2+a1y2+a2xy+a3x+a4y+a5=0.

Таким образом, для описания бесконечной кривой второго порядка достаточно пяти параметров. Если требуется построить отрезок кривой, понадобятся еще два параметра.

Кривая третьего порядка. Отличие этих кривых от кривых второго порядка состоит в возможном наличии точки перегиба. Например, график функции у = x3

имеет точку перегиба в начале координат . Именно эта особенность позволяет сделать кривые третьего порядка основой отображения природных объектов в векторной графике. Например, линии изгиба человеческого тела весьма близки к кривым третьего порядка. Все кривые второго порядка, как и прямые, являются частными случаями кривых третьего порядка.

В общем случае уравнение кривой третьего порядка можно записать так:

x3+a1y3+a2x2y+a3xy2+a4x2+a5y2+a6xy+a7x+a8y+a9=0.

Таким образом, кривая третьего порядка описывается девятью параметрами.

Описание ее отрезка потребует на два параметра больше.

[pic]

Рисунок 6 Кривая третьего порядка (слева) и кривая Безье (справа)

Кривые Безье. Это особый, упрощенный вид кривых третьего порядка (см. рис. 6). Метод построения кривой Безье (Bezier) основан на использовании пары касательных, проведенных к отрезку линии в ее окончаниях. Отрезки кривых Безье описываются восемью параметрами, поэтому работать с ними удобнее. На форму линии влияет угол наклона касательной и длина ее отрезка. Таким образом, касательные играют роль виртуальных “рычагов”, с помощью которых управляют кривой.