
- •Глава 3
- •§1. Производная числовой функции одного действительного переменного
- •1.1. Определение производной. Ее физическая и геометрическая интерпретация
- •1.2. Вычисление производных для основных элементарных функций Операция нахождения производной функции называется дифференцированием функции.
- •2. Степенная функция: (где – любое действительное число). Область изменения х зависит от , она была указана в гл.1, §4, п.4.1. Придадим х приращение х, тогда новое значение у будет
- •1.3. Производная обратной функции
- •1.4. Простейшие правила вычисления производных
- •1.5. Теорема о непрерывности функции, имеющей производную
- •1.6. Производная сложной функции
- •1.7. Производная показательно – степенной функции
- •1.8. Производная неявно заданной функции
- •1.9. Производная функции, заданной параметрически
- •1.10. Односторонние производные
- •1.11. Бесконечные производные
- •1.12. Таблица основных формул для производных
- •§2. Дифференциал числовой функции одного действительного переменного
- •2.1. Определение дифференциала и его геометрический смысл
- •2.2. Основные формулы и правила дифференцирования
- •2.3. Инвариантность формы дифференциала
- •2.4. Использование дифференциала для приближенных вычислений
- •§3. Производные и дифференциалы высших порядков
- •3.1. Определение производной n-го порядка
- •3.2. Вычисление производной n-го порядка
- •3.3. Формула Лейбница для n-й производной произведения двух функций
- •3.4. Дифференциалы высших порядков
- •3.5. Параметрическое дифференцирование
- •§4. Основные теоремы дифференциального исчисления
- •4.1. Теорема Ролля (теорема о корнях производной)
- •4.2.1. Условие постоянства функции
- •4.2.2. Условие монотонности функции
- •Рассмотрим теперь вспомогательную функцию
- •§5. Применения дифференциального исчисления
- •5.1.1. Раскрытие неопределенности вида
- •5.1.2. Раскрытие неопределенности вида
- •5.1.3. Раскрытие неопределенностей других видов
- •5.2. Формула Тейлора
- •Далее, вспоминая, что
- •5.3. Разложение по формуле Тейлора некоторых элементарных функций
- •5.4. Интерполяционный полином Лагранжа
- •5.4.1. Установление функциональной зависимости
- •5.4.2. Аппроксимация функций
- •5.5. Исследование функции и построение графика
- •5.5.1. Выпуклость и вогнутость кривой. Точки перегиба
- •5.5.2. Максимумы и минимумы функции.
- •5.5.3. Наибольшее и наименьшее значение функции на отрезке
- •5.5.4. Асимптоты
- •5.5.4.1. Вертикальные асимптоты
- •5.5.4.2. Горизонтальные асимптоты
- •5.5.4.3. Наклонные асимптоты
- •5.5.5. Схема исследования функции и построения графика
- •Упражнения
5.5.3. Наибольшее и наименьшее значение функции на отрезке
Пусть функция непрерывна на отрезке [a,b]. Тогда на этом отрезке функция достигает наибольшего и наименьшего значений (2-ая теорема Вейерштрасса). Остановимся для определенности на наибольшем значении.
Если оно достигается в некоторой точке между a и b, то это одновременно будет одним из максимумов (очевидно, наибольшим); но наибольшее значение может достигается и на одном из концов промежутка, a или b.
Итак, функция на отрезке [a,b] достигает своего наибольшего значения либо на одном из концов этого отрезка, либо в такой внутренней точке этого отрезка, которая является точкой максимума.
То же самое можно сказать и о наименьшем значении функции: оно достигается либо на одном из концов данного отрезка, либо в такой внутренней точке, которая является точкой минимума.
Из предыдущего вытекает следующее правило: если требуется найти наибольшее значение непрерывной функции на промежутке [a,b], то надо:
1) найти все максимумы функции на отрезке;
2) определить значения функции f(a) и f(b) на концах отрезка;
3) из всех полученных выше значений функции выбрать наибольшее; оно и будет представлять собой наибольшее значение функции на отрезке.
Аналогичным образом следует поступать и при определении наименьшего значения функции на отрезке.
С помощью теории максимума и минимума решаются многие задачи геометрии, физики и т.д. Рассмотрим некоторые из таких задач.
Задача 1. Затраты на перевозку груза по железной дороге в единицу времени состоят из двух частей: постоянной, равной a, и переменной, пропорциональной v3, где v – скорость. При какой скорости затраты на перевозку груза будут наименьшими?
Решение. Обозначим расходы на перевозку груза в единицу времени через q. Тогда q = a + bv3, где b – коэффициент пропорциональности.
Затраты на перевозку грузу составляют
,
где S – расстояние, на которое перевозится груз.
Затраты на перевозку необходимо выбрать наименьшими. Для этого нужно исследовать функцию
на минимум. Находим
,
,
откуда
,
,
так как b
> 0 и S >
0.
При этой скорости движения затраты будут наименьшими так как при v → 0 и v → ∞ затраты неограниченно возрастают.
Задача 2. Дальность S полета снаряда, выпущенного с начальной скоростью v0 из орудия, наклоненного под углом φ к горизонту, определяется формулой
,
где g – ускорение свободного падения. Определить угол φ0, при котором дальность S будет наибольшей при данной начальной скорости v0.
Решение. Величина S
представляет собой функцию
переменного угла φ.
Исследуем эту функцию на максимум на
отрезке 0
φ
:
,
откуда
,
следовательно,
при значении φ
=
дальность полета S
имеет максимум
.
Значения функции S(φ) на концах отрезка [0, ] равны:
S(0) = 0, S( ) = 0.
Таким образом, найденный максимум и есть искомое наибольшее значение S.
5.5.4. Асимптоты
Очень часто приходится исследовать форму кривой y = f(x), а значит, и характер изменения соответствующей функции при неограниченном возрастании (по абсолютной величине) абсциссы x или ординаты y переменной точки М(x,y) кривой или абсциссы и ординаты одновременно. При этом важным частным случаем является тот, когда исследуемая кривая при удалении ее переменной точки М(x,y) в бесконечность (расстояние этой точки от начала координат неограниченно возрастает) неограниченно приближается к некоторой прямой.
Определение. Если рассеяние δ от точки кривой до некоторой определенной прямой по мере удаления точки в бесконечность стремится к нулю, то эта прямая называется асимптотой кривой (рис.26).
Рис. 26
Кривые с бесконечной ветвью могут иметь три вида асимптот: вертикальные (т.е. параллельные оси ординат, рис.26,а), горизонтальные (т.е. параллельные оси абсцисс, рис.26,b) и наклонные (рис.26,с).