
- •1. Фотометрический анализ (молекулярная абсорбционная спектроскопия). Теоретические основы
- •1.1. Методы фотометрического анализа
- •1.2. Основной закон светопоглощения (закон Бугера-Ламберта-Бера)
- •1.3. Спектр светопоглощения (спектральная характеристика вещества)
- •1.4. Отклонения от основного закона светопоглощения
- •1.5. Закон аддитивности светопоглощения
- •1.6. Качественный спектрофотометрический анализ
- •1.7. Количественный анализ по светопоглощению
- •1.7.1. Подчинение основному закону светопоглощения
- •1.7.2. Определение концентрации вещества в растворе с помощью градуировочного графика
- •1.7.3. Определение концентрации веществ в смеси
- •1.8. Приборы для измерения поглощения растворов. Принципиальные схемы и основные элементы
- •1.9. Спектрофотометрическое титрование
- •Необходимые реактивы и принадлежности
- •Порядок выполнения работы
- •Вопросы
- •Необходимые реактивы, приборы
- •Необходимые реактивы, приборы
- •Необходимые релжтиеы, приборы
- •Порядок работы на колориметре фотоэлектрическом; концентрационном кфк-2мп
- •Вопросы
- •Необходимые реактивы, приборы
- •Методика определения
- •Вопросы
- •Необходимые реактив, . Приборы
- •Методика онределения
- •Порядок работы на приборе лмф-69
- •Вопросы
- •2. Эмиссионный спектральный анализ
- •2.1. Теоретические основы эмиссионной спектроскопии
- •2.2. Качественный спектральный анализ
- •2.3. Количественный спектральный анализ
- •2.4. Источники возбужнения
- •2.5. Пламенная фотометрия
- •2.6. Применение эмиссионного спектрального анализа
- •Необходимые реактивы, приборы, посуда
- •Вопросы
- •3. Люминесцентный анализ
- •3.1.Теоретические основы метода
- •3.2. Спектры поглощения и спектры люминесценции
- •3.3. Энергетический и квантовый выходы люминесценции
- •3.4. Интенсивность люминесценции
- •3.5. Качественный анализ
- •3.6. Количественный анализ
- •3.7. Применение люминесцентного метода для анализа пищевых продуктов и с/х сырья
- •3.8. Аппаратура люминесцентного анализа
- •Аппаратура ы реактивы
- •Выполнение работы
- •Работа 2. Определение свободного и связанного витамина в2 в пищевых продуктах
- •Необходимые реактивы, приборы
- •Вопросы
- •4. Хроматография
- •4.1. Основные принципы и классификация хроматографических методов анализа
- •4.2. Характеристика хроматографических методов анализа
- •4.2.1. Адсорбционная хроматография (жидкостно-адсорбционная, жидкостная твердoфазная хроматография)
- •4.2.2. Ионообменная хроматоарафия (жидкостная твердофазная хроматография (жтх))
- •4.2.3. Распределительная хроматография (жидкость-жидкостная хроматография жжх))
- •4.2.4. Осадочная хроматография
- •4.2.5. Газовая хроматография
- •4.2.6. Жидкостная высокоскоростная (высокоэффективная) хроматография
- •4.2.7. Гель-хроматография
- •4.2.8. Молекулярный ситовой анализ
- •Вопросы
- •Вопросы
- •Работа 2. Определение углеводов методом тонкослойной хроматографии
- •Работа 3. Изучение свойств ионообменных смол
- •Работа 4. Концентрирование ионов меди (II) из разбавленных растворов методом ионообменной хроматографии
- •Необходимые реактивы, приборы
- •Работа 5. Отделение железа от меди и ее качественное определение
- •Работа 6. Определение никеля по величине зоны хроматограммы
- •Работа 7. Определение спиртов методом газо-жидкостной хроматографии на лабораторном хроматографе
- •Вопросы
- •Работа 8. Идентификация и количестенное определение веществ в газо-жидкостной хроматографии (гжх) по хроматограммам свидетелей и таблицам
- •Работа 9. Определение содержания влаги в спиртах методом внутреннего стандарта
- •Литература
1.9. Спектрофотометрическое титрование
Спектрофотометрическое титрование основано на изменении оптической плотности раствора в процессе титрования. Аликвотную часть анализируемого раствора помещают в кювету, через которую проходит световой поток, выделенный светофильтром, и приступают к титрованию. Измеряют оптическую плотность раствора. На основании результатов строят кривую спектрофотометрического титрования, откладывают по оси ординат значения оптической плотности А, а по оси абсцисс - объем раствора титранта (мл).
A
A
а
б
к.т.т. V,мл к.т.т. V,мл
А
А
в
г
к.т.т. V,мл к.т.т. V,мл
Рис. 1.11 Кривые спектрофотометрического титрования:
А + В → С
а) А поглощает, В и С не поглошают при данной длине волны,
б) А и С не поглощают, В – поглощает;
в) А и В не поглощают, С – поглощает;
г) А и В поглощают, С - не поглощает.
Например, при титровании железа (II) раствором перманганата калия кривая титрования имеет вид, изображенный на рис. 1.11.б. При выбранной длине волны железо (II) не поглощает свет и поэтому, пока в растворе есть Fe2+, оптическая плотность раствора практически не изменяется. После того, как все железо прореагировало, в растворе появится избыток КМnО4, который поглощает свет данной длины волны, и оптическая плотность возрастает пропорционально объему добавляемого раствора перманганата калия. Конечную точку титрования находят графически. Для этого достаточно иметь несколько точек, характеризующих недотитрованный и перетитрованный растворы.
На рис. 1.11 представлены кривые спектрофотометрического титрования раствора вещества А и раствором В при данной длине волны.
Метод спектрофотометрического титрования имеет ряд преимуществ перед визуальными методами: он более избирателен, позволяет проводить последовательное определение нескольких компонентов одной пробы, дает возможность проводить анализ окрашенных растворов с низкой концентрацией определяемого компонента (10-1 – 10-8 %), позволяет автоматизировать процесс титрования.
РАБОТА 1. ВЫБОР УСЛОВИЙ ДЛЯ ФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АЛЮМИНИЯ
Фотометрической реакцией называют химическую реакцию образования окрашенного (обладающего спектром поглощения в видимой или УФ-области) комплекса исследуемого вещества с реагентом. Ее применяют в тех случаях, когда анализируемое вещество не обладает спектром поглощения (раствор бесцветен) и не может быть прямо проанализировано на фотоколориметре.
Для обеспечения воспроизводимости образования комплекса и получения максимального коэффициента поглощения исследуют факторы. влияющие на фотометрическую реакцию (рН среды, температура раствора, концентрация реагента, время образования комплекса, мешающие примеси и др.) и затем выбирают оптимальные условия.
Цель работы - выбрать оптимальные условия для проведения количественного определения алюминия фотометрическим методом, и на основании полученных данных проверить подчинение раствора алюмино-алюминиевого комплекса общему закону светопоглощения.
Для этого необходимо:
1 Исследовать зависимость оптической плотности раствора А от длина волны λ.
2. Исследовать влияние рН на оптическую плотность.
3. Исследовать зависимость оптической плотности растворов от количества добавляемого реагента (алюминона).
4. Проверить выполнимость основного закона светопоглощенчя.