Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПРЕДВАРИТЕЛЬНЫЙ КУРС.doc
Скачиваний:
30
Добавлен:
09.11.2019
Размер:
1.37 Mб
Скачать

2.3.4 Графики многочленов от одной переменной

Е сли мы нашли все корни многочлена, то не составляет большого труда нарисовать его график. В самом деле, мы знаем, что при очень больших значениях аргумента (на +) всякий приведенный многочлен принимает большие положительные значения. Далее, в каждом корне нечетной кратности он будет менять знак, а в корне четной кратности будет касаться оси Ох, но знака менять не будет. Более того, поведение всей кривой в непосредственной близости от корня будет непосредственно определяться кратностью корня. Дело тут в том, что тот сомножитель (xam) общего выражения, который в данной точке обращается в нуль, в окрестности точки am меняется в тысячи раз, в то время как остальные сомножители изменяются незначительно. Действительно, если мы перемещаемся из точки 3,999 в точку 3,9999, то сомножитель (x4) изменится в 10 раз, в то время как сомножитель (x2)2 изменится на доли процента.

На рис.19 показано, как ведет себя график многочлена вблизи простого корня, а также вблизи корней кратности два и три. Если мы знаем, что на + многочлен всегда большой и положительный и нарисуем фрагменты графика многочлена вблизи его корней (с учетом получающихся знаков), то нетрудно нарисовать график многочлена целиком, просто соединяя непрерывной линией получившиеся фрагменты.

В качестве примера на рис. 20 показан график многочлена шестой степени, имеющего корни кратности три, два и один. На рисунке хорошо видно, что вблизи корня кратности 3 (при х = 0,75) поведение общего графика очень похоже на поведение графика кубической параболы у = х3 вблизи нуля. Правда, при этом следует учесть, что наш полином отличается от кубической параболы по знаку, т.е. ведет себя в нуле подобно графику функции у = (–1) х3 .

Двигаясь дальше вправо вдоль оси Ох, увидим, что поведение графика многочлена вблизи корня второго порядка (при х = 1,5) похоже на график квадратичной параболы, но также с учетом смены знака (напоминает график у = (–1) х2 ).

Т.е. наш график действительно может служить иллюстрацией следующего факта. Пусть нам нужно рассмотреть график функции, которую можно представить в виде произведения двух сомножителей:

F(x) = φ(x) × (x)

причем один из этих сомножителей φ(x) имеет корень при х = а, в то же время у другого сомножителя в этой точке корня нет. Тогда поведение графика произведения F(x) в окрестности точки а вполне определяется поведением графика φ(x) , т.е. того из сомножителей, у которого при х = а корень имеется.

Таким образом, мы действительно получили способ рисовать графики полиномов. Для этого достаточно знать корни многочлена, нарисовать локальное поведение графика вблизи корней, учитывая кратность корня и знак.

Знак устанавливается при последовательном движении справа налево, при этом используется тот факт, что мы знаем: при больших положительных значениях x приведенный многочлен всегда положителен.

После того, как локальное поведение вблизи корней установлено, достаточно соединить полученные фрагменты плавной кривой.