Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
вышка.docx
Скачиваний:
7
Добавлен:
09.11.2019
Размер:
1.51 Mб
Скачать

1.8. Матриці. Означення. Види матриць

Означення 1. Матрицею розміру називається прямокутна таблиця, складена із чисел вигляду , розміщених в рядках і стовпцях, яка позначається

Скорочено пишуть . Зустрічаються також позначення

числа називаються елементами матриці.

Означення 2. Дві матриці А і В однакових розмірів називаються рівними тоді і тільки тоді, коли рівні їх відповідні елементи, . Позначається

Розглянемо основні види матриць.

Нульовою називається матриця розміру , всі елементи якої дорівнюють нулю.

Квадратною називається матриця, в якої кількість рядків дорівнює кількості стовпців . У цьому випадку говорять, що матриця має порядок (замість розміру ).

Діагональною називається така квадратна матриця, в якої елементи головної діагоналі відмінні від нуля, а всі решта елементів дорівнюють нулю, позначається

Діагональна матриця, в якої всі діагональні елементи дорівнюють одиниці, називається одиничною матрицею, і позначається

Матриця що складається з одного стовпця називається матрицею-стовпцем

.

Аналогічно, матриця-рядок складається з одного рядка

Звернемо увагу, що ряд факторів пов’язаних з поняттям матриці для багатьох так чи інакше могли бути відомими ще до знайомства з самим терміном.

Розглянемо приклади.

Приклад 1. Відомість на отримання стипендії для 20 студентів є прикладом матриці розміром 20х1, елементами якої є розмір стипендії кожному.

Приклад 2. У відомості на зарплату бригаді для 15 робітників можуть бути вказані суми: нарахована, утримана і до оплати. Дані цієї відомості теж представляють матрицю розміру 15х3.

Приклад 3. При виконанні робіт в шахті (метро, тунелі) по проходці можна виділити два основних види робіт: виїмка породи (сюди входить буріння шпурів, заряжання, зривання, прибирання породи) і кріплення. Обидва види робіт при сталій площі поперечного перетину можуть вимірюватись в погонних метрах. Припустимо, що протягом доби кожна із трьох змін добилися таких результатів:

Зміни

Виїмка (в м)

Кріплення (в м)

І-а зміна

ІІ-а зміна

ІІІ-я зміна

Ці результати можна записати у вигляді матриці розміром 3х2:

1.9. Лінійні дії над матрицями

Іноді в роботі з таблицями (матрицями) прикладів типу 1–3 із 1.8., доводиться виконувати над ними певні операції. Так, якщо в прикладі 1 потрібно підрахувати заплановий розмір стипендій за семестр (6 місяців), то очевидно необхідно кожний елемент цієї матриці помножити на 6. Виникає необхідність множити матрицю на число.

Якщо в умовах прикладу 2 ми маємо відомості 3-х місяців одного квартала, то можна скласти зведену відомість за квартал, додаючи розміщені у відповідних графах дані стосовно кожного робітника.

Приходимо до дії додавання матриць .

Якщо в умовах прикладу 3, 1.8. позначити через і – результати роботи 3-х змін за першу і другу добу відповідно, то можна знайти сумарні результати за дві доби додаванням відповідних елементів і позначити це

Отже з прикладів бачимо, що цілком природно виникає необхідність дій множення матриці на число і додавання матриць.

Означення 1. Добутком числа на матрицю розміру називається нова матриця того ж розміру, кожний елемент якої дорівнює відповідному елементу матриці помноженному на число , тобто

Матриця (–1) – протилежна матриці , і позначається .

Дія додавання вводиться тільки для матриць одного і того ж розміру.

Означення 2. Сумою двох матриць і розміру називається матриця того ж розміру, кожний елемент якої дорівнює сумі відповідних елементів матриць–доданків, тобто , і позначається .

Якщо ж , то різниця матриць.

Дії додавання, віднімання і множення матриць на число називаються лінійними діями над матрицями.

Можна перевірити, що вони мають такі властивості:

Тут позначено через 0 – нульову матрицю і — протилежну матриці .

Вправа. Перевірити властивості 1–8 для матриць

і чисел .

Приклад. Задані матриці

, .

Знайти 1) ; 2) .

Розвязання. 1)

.

2) .