Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1 курс / Биология / Для подготовки к экзамену по биологии.doc
Скачиваний:
133
Добавлен:
01.10.2019
Размер:
3.11 Mб
Скачать

1. Организация эукариотической клетки.

Эндоплазматическая сеть (ЭПС) - это система цистерн и каналов, «стенка» которых образована мембраной. ЭПС пронизывает цитоплазму в разных направлениях и делит ее на изолированные отсеки (компартменты). Благодаря этому в клетке осуществляются специфические биохимические реакции. Эндоплазматическая сеть выполняет также синтетическую и транспортную функции. Если на поверхности эндоплазматической мембраны есть рибосомы, ее называют шероховатой, если рибосом нет – гладкой . На рибосомах осуществляется синтез белков. Белки проходят через мембрану в цистерны ЭПС, где приобретают третичную структуру и транспортируются по каналам к месту потребления. На гладкой ЭПС происходит синтез липидов, стероидов. ЭПС — основное место биосинтеза и построения мембран цитоплазмы. Отчленяющиеся от нее пузырьки представляют исходный материал для других одномембранных органелл: аппарата Гольджи, лизосом, вакуолей.

Аппарат Гольджи - органелла, обнаруженная в клетке итальянским исследователем Камилло Гольджи в 1898 г.

Аппарат Гольджи обычно расположен около клеточного ядра. Наиболее крупные аппараты Гольджи находятся в секреторных клетках.

Основным элементом органеллы является мембрана, образующая уплощенные цистерны - диски. Они располагаются друг над другом. Каждая стопка Гольджи (у растений называемая диктиосомой) содержит от четырех до шести цистерн. Края цистерн переходят в трубочки, от которых отчленяются пузырьки (пузырьки Гольджи), транспортирующие заключенное в них вещество к месту его потребления. Отчленение пузырьков Гольджи происходит на одном из полюсов аппарата. Со временем это приводит к исчезновению цистерны. На противоположном полюсе аппарата осуществляется сборка новых дисков-цистерн. Они формируются из пузырьков, отпочковывающихся от гладкой эндоплазматической сети. Содержимое этих пузырьков, «унаследованное» от ЭПС, становится содержимым аппарата Гольджи, в котором подвергается дальнейшей переработке.

Функции аппарата Гольджи разнообразны: секреторная, синтетическая, строительная, накопительная. Одна из важнейших функций - секреторная. В цистернах аппарата Гольджи происходит синтез сложных углеводов (полисахаридов), осуществляется их взаимосвязь с белками, приводящая к образованию мукопротеидов. С помощью пузырьков Гольджи готовые секреты выводятся за пределы клетки. Аппарат Гольджи образует гликопротеин (муцин), представляющий важную составную часть слизи; участвует в секреции воска, растительного клея. Иногда аппарат Гольджи принимает участие в транспорте липидов.

В аппарате Гольджи происходит укрупнение белковых молекул. Он участвует в построении плазматической мембраны и мембран вакуолей. В нем формируются лизосомы.

Лизосомы (от греч. лизис – разрушение, расщепление, сома – тело) — пузырьки больших или меньших размеров, заполненные гидролитическими ферментами (протеазами, нуклеазами, липазами и другими). Лизосомы в клетках не представляют собой самостоятельных структур. Они образуются за счет активности эндоплазматической сети и аппарата Гольджи и напоминают секреторные вакуоли. Основная функция лизосом — внутриклеточное расщепление и переваривание веществ, поступивших в клетку или находящихся в ней, и удаление из клетки.

Выделяют первичные и вторичные лизосомы (пищеварительные вакуоли, аутолизосомы, остаточные тельца).

Первичные лизосомы представляют собой пузырьки, ограниченные от цитоплазмы одинарной мембраной. Ферменты, находящиеся в лизосомах, синтезируются на шероховатой эндоплазматической сети и транспортируются к аппарату Гольджи. В цистернах аппарата Гольджи вещества подвергаются дальнейшим превращениям. Пузырьки с набором ферментов, отделившиеся от цистерн аппарата Гольджи, называют первичными лизосомами . Они участвуют во внутриклеточном пищеварении и иногда секреции ферментов, выделяющихся из клетки наружу. Это происходит, например, при замене хряща костной тканью в процессе развития, при перестройке костной ткани в ответ на повреждение. Секретируя гидролитические ферменты, остеокласты (клетки-разрушители) обеспечивают разрушение минеральной основы и органического остова матрикса кости. Накапливающиеся «обломки» подвергаются внутриклеточному перевариванию. Остеобласты (клетки-строители) создают новые элементы кости.

Первичные лизосомы могут сливаться с фагоцитарными и пиноцитарными вакуолями, образуя вторичные лизосомы. В них происходит переваривание веществ, поступивших в клетку путем эндоцитоза, усвоение их. Вторичные лизосомы — пищеварительные вакуоли, ферменты которых доставлены с помощью мелких первичных лизосом. Вторичные лизосомы (пищеварительные вакуоли) у простейших(амеб, инфузорий) - это способ поглощения пищи. Вторичные лизосомы могут выполнять защитную функцию, когда, например, лейкоциты (фагоциты) захватывают и переваривают попавшие в организм бактерии.

Продукты переваривания поглощаются клеткой, но часть материала может остаться непереваренной. Вторичные лизосомы, содержащие нерасщепленный материал, называют остаточными тельцами или телолизосомами. Остаточные тельца обычно через плазматическую мембрану выводятся наружу (экзоцитоз). У человека при старении организма в остаточных тельцах клеток мозга, печени и в мышечных волокнах накапливается «пигмент старения» - липофусцин.

Аутолизосомы (аутофагирующие вакуоли) присутствуют в клетках простейших, растений и животных. В этих лизосомах происходит разрушение отработанных органелл самой клетки (ЭПС, митохондрий, рибосом, гранул гликогена, включений и др.). Например, в клетках печени среднее время жизни одной митохондрии — около 10 дней. После этого срока мембраны эндоплазматической сети окружают митохондрию, образуя аутофагосому. Аутофагосомы сливаются с лизосомой, образуя аутофаголизосому, в которой происходит процесс распада митохондрии. Процесс уничтожения структур, ненужных клетке, называется аутофагией. Число аутолизосом возрастает при повреждениях клетки. В результате высвобождения содержимого лизосом в цитоплазму происходит саморазрушение клетки или аутолиз. При некоторых процессах дифференцировки аутолиз может быть нормой. Например, при исчезновении хвоста у головастика во время превращения его в лягушку. Ферменты лизосом принимают участие в аутолизе погибших клеток

Известно более 25 генетических заболеваний, связанных с патологией лизосом. Например, в лизосомах может происходить накопление гликогена, если отсутствует соответствующий фермент.

Рибосомы относят к немембранным органеллам клетки. На рибосомах осуществляется соединение аминокислотных остатков в полипептидные цепочки (синтез белка). Рибосомы очень малы и многочисленны.

Каждая рибосома состоит из двух частей: малой и большой субъединиц. В первую входят молекулы белка и одна молекула рибосомальной РНК (р–РНК), во вторую - белки и три молекулы р–РНК. Белок и р–РНК по массе в равных количествах участвуют в образовании рибосом. Р–РНК синтезируется в ядрышке.

В синтезе белка, кроме рибосом, принимают участие матричная РНК (м–РНК) и транспортная РНК (т–РНК). М–РНК несет генетическую информацию о синтезе белка от ядра. Эта информация закодирована в последовательном расположении нуклеотидов в молекуле м–РНК. М–РНК присоединяется к поверхности малой субъединицы. Т–РНК доставляет из цитоплазмы к рибосоме необходимые аминокислоты, из которых строится полипептидная цепь. В растущей полипептидной цепи каждая аминокислота занимает соответствующее место, что определяет качество синтезируемого белка. В процессе синтеза белка рибосома перемещается вдоль м–РНК.

Митохондрии имеются во всех эукариотических клетках. Основная функция митохондрии связана с окислением органических соединений и использованием энергии, освобождающейся при распаде этих соединений, для синтеза молекул АТФ.

Число, размеры, форма митохондрии в клетке различны и непостоянны. Митохондрии могут иметь вытянутую, округлую, спиральную, палочковидную форму.

В клетках, нуждающихся в большом количестве энергии, митохондрии много. Например, в одной печеночной клетке их может быть около 1000. Локализация митохондрии различна. Обычно они скапливаются вблизи тех участков цитоплазмы, где велика потребность в энергии АТФ. Например, в скелетных мышцах митохондрии находятся вблизи миофибрилл.

Каждая митохондрия окружена двумя мембранами. Наружная митохондриальная мембрана, отделяющая ее от гиалоплазмы, гладкая. Наружную мембрану от внутренней отделяет межмембранное пространство. Внутренняя мембрана, ограничивающая матрикс митохондрии, образует многочисленные складки (кристы). Чем больше крист присутствует в митохондрии, тем интенсивнее протекают окислительно-восстановительные процессы.

Например, митохондрии клеток сердечной мышцы содержат втрое больше крист, чем митохондрии клеток печени.

В матриксе митохондрии находятся различные ферменты, кольцевая молекула ДНК, рибосомы, РНК. На митохондриальных рибосомах синтезируются белки, специфические для органеллы. Митохондрии относят к полуавтономным органеллам.

На внутренней мембране присутствуют белки, катализирующие окислительно-восстановительные реакции в дыхательной цепи, ферменты, участвующие в синтезе АТФ, и специфические транспортные белки.

Наружная мембрана содержит ферменты, участвующие в синтезе митохондриальных липидов.

Митохондрии называют энергетическими станциями клетки. В них происходит окисление органических веществ, благодаря чему освобождается заключенная в веществах энергия. Она необходима для осуществления всех жизненных процессов в клетке. Эта энергия используется на восстановительные процессы. В митохондриях осуществляется восстановление (синтез) АТФ (аденозинтрифосфорной кислоты) из АДФ (аденозиндифосфорной кислоты). В результате энергия, выделившаяся при разложении веществ, вновь переходит в связанную форму в молекуле АТФ.

АТФ транспортируется ко всем участкам клетки, где необходима энергия. Эта энергия, заключенная в макроэргических связях в молекуле АТФ, выделяется при распаде АТФ до АДФ. АДФ снова поступает в митохондрии, где в ходе восстановительных реакций превращается в АТФ, связав энергию, освобожденную при окислении веществ.

Окислительно-восстановительные процессы в митохондриях протекают ступенчато, при участии окислительных ферментов. Эти процессы обусловлены переходом энергии химических связей, заключенной в веществах, в макроэргическую связь в молекуле АТФ, которая синтезируется при использовании освобождающейся энергии из АДФ и фосфата .

Митохондрии размножаются поперечным делением или фрагментацией на более короткие.

Пластиды – двумембранные органеллы, присутствующие в растительных клетках. Различают три вида пластид: хлоропласты, хромопласты и лейкопласты.

Хлоропласты – органеллы, осуществляющие фотосинтез, ограничены двумя мембранами – внешней и внутренней. Между мембранами есть межмембранное пространство. В хлоропластах присутствует зеленый пигмент – хлорофилл, находящийся в системе мембран, которые погружены во внутреннее содержимое пластид – матрикс (или строму).

В строме хлоропластов находятся плоские мембранные структуры, называемые ламеллами. Ламеллы стромы лежат параллельно друг другу и связаны между собой. Две соседние мембраны, соединяясь концами, формируют замкнутые плоские мембранные структуры в форме диска – тилакоиды, – содержащие внутри жидкость. Тилакоиды, уложенные в стопки, образуют граны. Число тилакоидов на одну грану варьирует: от нескольких единиц до 50 и более. Тилакоиды в гране тесно сближены друг с другом. В состав граны, кроме замкнутых дисков тилакоидов, входят участки ламелл. Ламеллы стромы связывают между собой отдельные граны хлоропласта.

Количество гран в хлоропластах может достигать 40-60. В мембранных структурах хлоропластов присутствуют пигменты: зеленые (хлорофиллы А и В), желто-оранжевые (ксантофилл и каротин) и др., ферменты, синтезирующие АТФ и переносчики электронов.

Обычно различают две фазы:

Световая фаза, в ходе которой происходит превращение энергии света в химическую энергию фотолиза воды. Эта фаза завершается образованием АТФ и НАДФ-Н (фотофосфорилирование). Процесс происходит в тилакоидах, где локализуются фотосистемы, поглощающие энергию солнечных лучей (хлорофилловые пигменты), а также ферменты, осуществляющие процесс переноса электронов и фотофосфорилирование.

Темновая фаза в основном протекает в строме. В результате целого ряда реакций, проходящих в эту фазу, синтезируются органические вещества (восстановление СО2). Процесс протекает благодаря АТФ и НАДФ·Н, синтезированных в предыдущей фазе. Образующаяся глюкоза поступает в цитоплазму, а при необходимости может временно сохраняться в виде полимера (крахмала).

В строме хлоропластов находятся кольцевые молекулы ДНК, рибосомы, РНК, различные ферменты. Пластиды, как и митохондрии, способны к синтезу собственных белков. Пластиды относятся к полуавтономным органеллам. В хлоропластах происходит фотосинтез, в результате которого связывается углекислый газ, выделяется кислород и образуются органические вещества.

В процессе фотосинтеза выделяют две стадии: световую и темновую.

Световая стадия происходит на свету, при участии хлорофилла. Хлорофилл, присутствующий в гранах хлоропластов, принимает участие в поглощении энергии солнечного света и превращении ее в энергию химических связей в веществах. В результате ряда реакций накапливается энергия, выделяется кислород. В темновой стадии, протекающей в строме без участия света, полученная энергия используется в реакциях восстановления СО2 и с помощью ферментов осуществляется синтез углеводов.

Хлоропласта размножаются делением.

Хромопласты – окрашенные пластиды, не участвуют в фотосинтезе. Окраска пластид обусловлена присутствием красных, желтых, оранжевых пигментов. Хромопласты образуются из хлоропластов или редко из лейкопластов (например, в моркови). Присутствие хромопластов в лепестках цветов и плодах обусловливает яркость их окраски и способствует привлечению насекомых- опылителей цветов и животных, распространителей плодов.

Лейкопласты бесцветны. Они не содержат пигментов, но приспособлены для хранения запасов питательных веществ, например, крахмала. Лейкопластов особенно много в корнях, семенах, корневищах и клубнях. Лейкопласты отличаются от хлоропластов тем, что содержат мало ламелл, но под влиянием света способны образовывать тилакоидные структуры и приобретать зеленую окраску. Например, картофель может позеленеть, если его хранить на свету.

Клеточный центр располагается около ядра и состоит из парных центриолей и центросферы.

Центриоли характерны для животных клеток, их нет у высших растений, низших грибов и некоторых простейших. Центриоли окружены зоной более светлой цитоплазмы, от которой радиально отходят тонкие фибриллы (центросферы).

Основу центриолей составляют девять триплетов микротрубочек (9+0), расположенных по окружности, и образующих полый цилиндр. Триплеты микротрубочек по кольцу объединены фибриллами. Радиальные фибриллы от каждого триплета отходят к центру, где они соединяются друг с другом .

Перед делением ядра в синтетическом периоде центриоли удваиваются. В начале митоза к полюсам клетки направляются по две центриоли. Они принимают участие в формировании веретена деления, состоящего из микротрубочек. Центриоли участвуют в организации цитоплазматических микротрубочек.

Микротрубочки - трубочки, образованные белком тубулином, диаметром 24 мм. Участвуют в образовании цитоскелета и делении ядра.

Микрофиламенты - нити белка актина длиной 6 нм 1. Участие в образовании цитоскелета, образование кортикального слоя под плазматической мембраной.

Особенности строения растительной клетки:

Растительная клетка

  1. В состав клеточной стенки входит целлюлоза

  2. Вакуоли большие, наполнены клеточным соком

  3. Цитоплазма на периферии клетки

  4. Ядро обычно расположено на периферии клетки

  5. Две цитоплазматические мембраны: внешняя - плазмалемма и внутренняя - тонопласт

  6. Имеются пластиды: лейкопласты, хлоропласты, хромопласты

  7. Реснички и жгутики отсутствуют у высших растений

  8. Центриоли отсутствуют у высших растений

2.

В XVII-XVIII вв. оформились два взгляда на онтогенез — преформизм и эпигенез. Сторонники преформизма полагали, что зародышевое развитие сводится к росту вполне сформированного зародыша. Предполагалось, что зародыш — уменьшенный вариант сложноустроенного взрослого организма — существовал в такой форме с момента творения. Преформисты, в свою очередь, разделились на две группы. Овисты — Я. Сваммердам, А. Валлиснери, М. Мальпиги, Ш. Бонне, А. Галлер, Л. Спаланзани и др. — считали, что уже сформированный зародыш находится в яйцеклетке, а мужское половое начало лишь дает толчок к развитию. Анималькулисты (А. Левенгук, Н. Хартсекер, И.Н. Либеркюн и др.) утверждали, что зародыш заключен в сперматозоиде, который развивается за счет питательных веществ яйца. А. Левенгук допускал существование "мужских" и "женских" сперматозоидов. Крайним выражением преформизма явилась теория вложений. Согласно ей, половые клетки зародышей, как матрешки, уже несут в себе зародышей следующего поколения, в тех содержатся зародыши последующих поколений, и так далее.

Воззрения преформистов базировались на некоторых фактических данных. Так, Я. Сваммердам, вскрыв куколку бабочки, обнаружил там вполне сформированное насекомое. Ученый воспринял это как доказательство того, что более поздние стадии развития "спрятаны" в более ранних и до поры до времени не видны. Ш. Бонне открыл партеногенез — размножение без оплодотворения — у тлей, что было воспринято овистами как довод в их пользу.

Ряд фактов с точки зрения преформизма получал не слишком удачное объяснение. В XVIII в. благодаря работам Р. Реомюра и А. Трамбле становится широко известным явление регенерации. Ш. Бонне сводил и регенерацию, и различные формы бесполого размножения к "предсуществованию" в организме особых, специально на сей предмет предобразованных зародышей. Таким образом, гидра вся целиком с точки зрения преформизма представляла собой яичник или собрание зародышей. Сходство детей с обоими родителями преформисты объясняли тем, что зародыш, происшедший из яйца или из семенного анималькуля, формируется по образу и подобию своих родителей под влиянием воображения матери в течение утробной жизни. Плохо согласовывалось с идеей преформизма и появление уродств. Впрочем, некоторые сторонники этой концепции допускали, что вложенные зародыши не обязательно идентичны друг с другом, вплоть до того, что и сам прогресс живых форм мог быть преформирован в момент творения.

Приверженцы альтернативного течения — эпигенетики — считали, что в процессе онтогенеза происходит новообразование структур и органов зародыша из бесструктурного вещества. Впервые идея эпигенеза встречается в труде В. Гарвея "Исследования о нарождении животных" (1651 г.), но в полной мере соответствующие взгляды были выражены К.Ф. Вольфом (1733-1794). К.Ф. Вольф исходил из того, что, если правы преформисты, то все органы зародыша, как только мы их можем увидеть, должны быть полностью сформированы. В своей работе "Теория зарождения" (1759 г.) ученый описывает картины постепенного возникновения различных органов из "неорганизованной массы" у животных и растений. К сожалению, К.Ф. Вольф работал с довольно плохим микроскопом, что породило многие фактические неточности, но это не умаляет значения созданной им теории эпигенеза.

Решающий перелом в споре между представителями двух течений произошел в XIX в. после работ К.М. Бэра (1792-1876), сумевшего снять альтернативу — или преформизм, или эпигенез. К.М. Бэр считал, что нигде в зародыше не происходит новообразований, имеют место лишь преобразования. При этом преобразование К.М. Бэр понимал отнюдь не в духе преформизма, а рассматривал его как подлинное развитие, с глубокими качественными преобразованиями от более простого и недифференцированного к более сложному и дифференцированному.

ПРОВИЗОРНЫЕ ОРГАНЫ

Эмбриональное развитие позвоночных с разным типом онтогенеза протекает в различных условиях. Для осуществления связи зародыша со средой появляются специальные временные (провизорные) органы. К провизорным органам относят желточный мешок, амнион, аллантоис, хорион, плаценту и серозную оболочку.

Назначение провизорных органов - обеспечение жизненных функций зародыша.

Желточный мешок осуществляет функции питания, дыхания, выделения, кроветворения. У млекопитающих редуцированный желточный мешок входит в состав плаценты.

У высших позвоночных животных, потерявших связь с водной средой, зародыш развивается в специальных амниотических оболочках. Такой оболочкой может быть амнион, наполненный жидкостью. Амнион осуществляет функции обмена и защиты от высыхания и механических повреждений. Амниотическая жидкость, в которой находится эмбрион, представляет собой раствор белков, сахаров, минеральных солей, содержит мочевину и гормоны. В процессе развития состав среды изменяется. В акушерстве амниотическую жидкость, отходящую перед родами, называют водами.

У рептилий и птиц есть аллантоис и серозная оболочка. Аллантоис - провизорный орган, осуществляющий обменные функции. В аллантоисной жидкости скапливаются продукты диссимиляции зародыша (мочевина, мочевая кислота), через стенки аллантоиса происходит газообмен.

Наружная часть амниона - серозная оболочка - выполняет газо-обменную, защитную, трофическую функции. У рептилий и птиц она окружает белок и способствует его проникновению через кровеносные сосуды в зародыш. Снаружи серозная оболочка покрыта скорлупой.

У млекопитающих и человека яйцеклетка бедна желтком, поэтому провизорные органы имеют свои особенности. В связи с внутриутробным развитием внезародышевые органы формируются на более ранних стадиях, чем у рептилий и птиц.

3.

Природный очаг — это территория, на которой происходит непрерывная циркуляция возбудителя определенной инфекционной болезни среди животных (больных или носителей) с помощью живых переносчиков; пребывание людей в П. о. сопряжено с опасностью заражения этой болезнью.

Природный очаг антропургический — это П. о., возникший в результате хозяйственной деятельности человека при освоении ранее не обжитых территорий.

Природный очаг дочерний — это П. о., возникший в результате отщепления от первичного, издревле существующего П. о.

Природный очаг моновекторный — это П. о., связанный с наличием переносчиков, относящихся лишь к одному биологическому роду.

Природный очаг моногостальный — это П. о., связанный с наличием только одного вида животных — резервуаров вируса.

Природный очаг поливекторный — это П. о., связанный с наличием различных переносчиков возбудителя болезни, принадлежащих к нескольким биологическим родам.

Природный очаг полигостальный — это П. о., связанный с наличием нескольких видов животных — резервуаров вируса.

По происхождению выделяют очаги:

1)природные (клещевой энцефалит);

2)синантропные - существуют в населенном пункте, где циркуляция возбудителя осуществляется за счет синантропных животных (чесотка);

3)антропургические - возникают в результате преобразования природной среды человеком (описторхоз в местах искусственно созданных водоемов);

4) смешанные (трихинеллез). Ареал природных очагов определяется ареалом естественных хозяев возбудителя и ареалом переносчика.

По протяженности (площади) очаги могут быть:

- узко ограниченными (нора грызуна, гнездо птицы - очаг клещевого возвратного тифа);

- диффузными (тайга - очаг таежного энцефалита);

- сопряженными, если в очаге циркулируют возбудители нескольких трансмиссивных болезней (туляремии и чумы).

Результатом заражения реципиента в природном очаге болезни может быть его гибель (в случае высокой вирулентности возбудителя), болезнь с последующим выздоровлением или вакцинация (образование иммунных защитных тел без выраженных клинических признаков болезни - при слабой вирулентности возбудителя). На исход заражения реципиента в очаге также влияют следующие факторы:

1)патогенность возбудителя для данного реципиента:

2)"агрессивность" переносчика (частота кровососания);

3)доза возбудителя, вводимого в организм реципиента;

4)степень выраженности неспецифических и специфических иммунных реакций реципиента.

БИЛЕТ №7

1.

ДНК была открыта Иоганном Фридрихом Мишером в 1869 году. Вначале новое вещество получило название нуклеин, а позже, когда Мишер определил, что это вещество обладает кислотными свойствами, вещество получило название нуклеиновая кислота . Биологическая функция новооткрытого вещества была неясна, и долгое время ДНК считалась запасником фосфора в организме. Постепенно было доказано, что именно ДНК, а не белки, как считалось раньше, является носителем генетической информации. Вплоть до 50-х годов XX века точное строение ДНК, как и способ передачи наследственной информации, оставалось неизвестным. Хотя и было доподлинно известно, что ДНК состоит из нескольких цепочек, состоящих из нуклеотидов, никто не знал точно, сколько этих цепочек и как они соединены.

Структура двойной спирали ДНК была предложена Френсисом Криком и Джеймсом Уотсоном в 1953 году на основании рентгеноструктурных данных, полученных Морисом Уилкинсом и Розалинд Франклин, и «правил Чаргаффа», согласно которым в каждой молекуле ДНК соблюдаются строгие соотношения, связывающие между собой количество азотистых оснований разных типов.

Молекулы ДНК (дезоксирибонуклеиновой кислоты) - это самые крупные биополимеры, их мономером является нуклеотид . Он состоит из остатков трех веществ: азотистого основания, углевода дезоксирибозы и фосфорной кислоты. Известны четыре нуклеотида, участвующие в образовании молекулы ДНК. Они отличаются друг от друга азотистыми основаниями. Два азотистых основания цитозин и тимин - производные пиримидина. Аденин и гуанин - относят к производным пурина. В названии каждого нуклеотида отражено название азотистого основания. Различают нуклеотиды: цитидиловый (Ц), тимидиловый (Т), адениловый (А), гуаниловый (Г). Соединение нуклеотидов в нити ДНК происходит через углевод одного нуклеотида и остаток фосфорной кислоты соседнего .

Согласно модели ДНК, предложенной Дж. Уотсоном и Ф. Криком (1953 г.),

молекула ДНК представляет собой две спирально обвивающие друг друга нити. Обе нити вместе закручены вокруг общей оси. Две нити молекулы удерживаются рядом водородными связями, которые возникают между их комплементарными азотистыми основаниями. Аденин комплементарен тимину, а гуанин — цитозину. Между аденином и тимином возникают две водородные связи, между гуанином и цитозином - три.

ДНК находится в ядре, где она вместе с белками образует линейные структуры - хромосомы. Хромосомы хорошо видны при микроскопировании в период деления ядра; в интерфазе они деспирализованы.

ДНК способна к самоудвоению (редупликации). Это имеет место в определенном периоде жизненного цикла клетки, называемом синтетическим. Редупликация позволяет сохранить постоянство структуры ДНК. Если под воздействием различных факторов в процессе репликации в молекуле ДНК происходят изменения в числе, порядке следования нуклеотидов, то возникают мутации.

Основная функция ДНК - хранение наследственной информации, заключенной в последовательности нуклеотидов, образующих ее молекулу, и передача этой информации дочерним клеткам. Возможность передачи наследственной информации от клетки к клетке обеспечивается способностью хромосом к разделению на хроматиды с последующей редупликацией молекулы ДНК.

В ДНК заключена вся информация о структуре и деятельности клеток, о признаках каждой клетки и организма в целом. Эта информация называется генетической.

В молекуле ДНК закодирована генетическая информация о последовательности аминокислот в молекуле белка. Участок ДНК, несущий информацию об одной полипептидной цепи, называется геном. Передача и реализация информации осуществляется в клетке при участии рибонуклеиновых кислот.

Генети́ческий код — свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.

В ДНК используется четыре нуклеотида — аденин (А), гуанин (Г), цитозин (Ц), тимин (T). В РНК используются те же нуклеотиды, за исключением тимина, который заменён похожим нуклеотидом — урацилом, (У ). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.

Для построения белков в природе используется 20 различных аминокислот. Каждый белок представляет собой цепочку или несколько цепочек аминокислот в строго определённой последовательности. Эта последовательность определяет строение белка, а следовательно все его биологические свойства. Набор аминокислот также универсален почти для всех живых организмов.

Реализация генетической информации в живых клетках (то есть синтез белка, кодируемого геном) осуществляется при помощи двух матричных процессов: транскрипции (то есть синтеза мРНК на матрице ДНК) и трансляции генетического кода в аминокислотную последовательность (синтез полипептидной цепи на мРНК). Для кодирования 20 аминокислот, а также сигнала «стоп», означающего конец белковой последовательности, достаточно трёх последовательных нуклеотидов. Набор из трёх нуклеотидов называется триплетом.