
- •2.Электронные устройства
- •Устройство и применение
- •3.Синхронная машина
- •Устройство
- •Принцип действия Двигательный принцип
- •Генераторный режим
- •Разновидности синхронных машин
- •5. Электропривод
- •6. Полупроводники́
- •Механизм электрической проводимости полупроводников
- •Энергетические зоны
- •Подвижность
- •Виды полупроводников По характеру проводимости Собственная проводимость
- •Примесная проводимость
- •По виду проводимости Электронные полупроводники (n-типа)
- •Дырочные полупроводники (р-типа)
- •7. Трансформа́тор
- •9. Импульсный источник питания
- •10. Машина постоянного тока
- •Принцип действия
- •Электродвигатель
- •Генератор
- •11.Стабилитрон
- •Структура усилителя
- •Классификация Аналоговые усилители и цифровые усилители
- •Виды усилителей по элементной базе
- •Виды усилителей по типу нагрузки
- •13. Реле управления
- •Устройство и принцип действия
- •Генераторы гармонических колебаний
- •Устройство и применение
- •19.Оптоэлектронные устройства
- •21. Однофазные выпрямители Однополупериодный выпрямитель (четвертьмост)
- •Полумост
- •Полный мост (Гретца)
- •Схемы включения полевых транзисторов
- •Транзисторы с управляющим p-n переходом
- •Транзисторы с изолированным затвором (мдп-транзисторы)
- •23. Основные понятия об интегральных схемах (аналоговые и цифровые)
- •24. Трехфазные трансформаторы
- •25. Усилители постоянного тока.
- •26. Цифровые логические элементы и логические операции.
- •27. Триггеры
- •28. Основные понятия об операционных усилителях и их применении.
- •29. Стабилизаторы напряжения.
- •30. Сглаживающие фильтры.
- •31. Расчет электропривода.
- •32. Электропроводимость полупроводников.
- •33. Электронно-дырочный переход и его свойства.
- •34. Тиристор
- •Вольтамперная характеристика тиристора
- •35. Структурная схема и основные параметры электронного выпрямителя.
- •36. Трансформаторы в различных режимах.
- •Режимы работы трансформатора
- •37. Мультивибраторы.
- •Ждущие мультивибраторы Моностабильный (одностабильный) мультивибратор
- •Бистабильный мультивибратор
- •38. Транзисторные и диодные ключи.
- •Диодные ключи
- •39. Основные элементы и параметры усилительного каскада.
- •40. Режимы работы усилительных каскадов.
- •41. Многокаскадные усилители.
- •42. Выходные каскады. Обратные связи в усилителях.
- •Обратные связи в усилителях
- •43. Формирователи импульсных сигналов.
- •44. Классификация полупроводниковых приборов.
- •45)Полупроводниковые резисторы и диоды
- •Типы диодов по назначению
- •4 6) Биполярные транзисторы. Коэффициенты усиления в транзисторах
- •47) Фотодиоды и светодиоды
- •48) Схемы включения биполярных транзисторов
- •49) Тиристоры
- •50) Однофазные выпрямители
- •Однополупериодный выпрямитель (четвертьмост)
- •51) Трехфазные выпрямили
- •Три четвертьмоста параллельно (схема Миткевича)
- •Три разделённых полумоста параллельно (три «с удвоением напряжения» параллельно) Три полумоста параллельно, объединённые кольцом/треугольником («треугольник-Ларионов»)
- •Три полумоста параллельно, объединённые звездой («звезда-Ларионов»)
- •Три двухфазных двухчетвертьмостовых параллельных выпрямителей Миткевича параллельно (6 диодов)
- •Три двухфазных двухчетвертьмостовых параллельных выпрямителей Миткевича последовательно (6 диодов)
- •Т ри полных моста параллельно (12 диодов)
- •Три полных моста последовательно (12 диодов)
- •52) Управляемые выпрямители
- •53) Электронные усилители
- •54) Классификация электронных усилителей
- •55) Основные элементы и параметры усилительного каскада
- •5 6) Режимы работы усилительных каскадов
- •57) Усилительный каскад с оэ, ок, об
- •58) Многокаскадные усилители
- •59) Выходные каскады (однотактные, двухтактные, с трансформаторной и бестрансформаторной связью)
- •60) Обратные связи в усилителях
- •61) Усилители постоянного тока
- •62) Компаратор сигналов
- •63) Масштабирующий и интегрирующий усилитель
- •64) Электронные генераторы с lc-контуром и rc-контуром
- •65) Электронные ключи
- •Неуправляемые
- •Управляемые
- •66) Основные сведения об импульсных устройствах и импульсах
- •67) Ограничители импульсов
- •68) Генераторы линейно-изменяющего напряжения
- •Учитывая, что
- •86. Двигатели для электропривода
10. Машина постоянного тока
— электрическая машина, предназначенная для преобразования механической энергии в электрическую постоянного тока (генератор) или для обратного преобразования (двигатель). Машина постоянного тока обратима.
Машина постоянного тока образуется из синхронной обращённой конструкции, если её якорь снабдить коллектором, который в генераторномрежиме играет роль выпрямителя, а в двигательном — преобразователя частоты. Благодаря наличию коллектора по обмотке якоря проходитпеременный ток, а во внешней цепи, связанной с якорем, — постоянный.
Типы
Различают следующие виды машин постоянного тока:
по наличию коммутации:
с коммутацией (обычные);
без коммутации (униполярный генератор и униполярный электродвигатель);
по типу переключателей тока:
с коллекторными переключателями тока (с щёточно-коллекторным переключателем);
с бесколлекторными переключателями тока (с электронным переключателем (вентильный электродвигатель)).
по мощности:
микромашины — до 500Вт;
малой мощности — 0,5-10 кВт;
средней мощности — 10-200 кВт;
большой мощности — более 200 кВт.
в зависимости от частоты вращения:
тихоходные — до 300 об./мин.;
средней быстроходности — 300—1500 об./мин.;
быстроходные — 1500-6000 об./мин.;
сверхбыстроходные — более 6000 об./мин.
по расположению вала:
горизонтальные;
вертикальные.
Принцип действия
Машина постоянного тока может работать в двух режимах: двигательном и генераторном.
Электродвигатель
Электродвигатели постоянного тока стоят почти на каждом автомобиле, это стартер, электропривод стеклоочистителя, вентилятор «печки» и др.
В роли индуктора выступает статор, на котором расположена обмотка. На неё подаётся постоянный ток, в результате чего вокруг неё создаётся постоянное магнитное поле. Обмотка роторасостоит из проводников, запитанных через коллектор. В результате на них действуют пары сил Ампера, которые вызывают вращающий момент. Направление сил определяется по правилу «буравчика». Однако этот вращающий момент способен повернуть ротор только на 180 градусов, после чего он остановится. Чтобы это предотвратить, используется щёточно-коллекторный узел, выполняющий роль переключателя полюсов и датчика положения ротора (ДПР).
Генератор
В генераторе индуктором также является статор, создающий постоянное магнитное поле между соответствующими полюсами. При вращении ротора, в проводниках обмотки якоря, перемещающихся в магнитном поле, по закону электромагнитной индукции наводится ЭДС, направление которой определяется по правилу правой руки. Переменная ЭДС обмотки якоря выпрямляется с помощью коллектора, через неподвижные щетки, посредством которых обмотка соединяется с внешней сетью.
Автомобильный генератор представляет собой генератор переменного трёхфазного тока с трёхфазным выпрямителем на шести диодах по схеме академика Ларионова.
11.Стабилитрон
Стабилитрон (диод Зенера) — полупроводниковый диод, предназначенный для поддержания напряжения источника питания на заданном уровне. По сравнению с обычными диодами имеет достаточно низкое регламентированное напряжение пробоя (при обратном включении) и может поддерживать это напряжение на постоянном уровне при значительном изменении силы обратного тока. Материалы, используемые для создания p-n перехода стабилитронов, имеют высокую концентрацию легирующих элементов (примесей). Поэтому, при относительно небольших обратных напряжениях в переходе возникает сильное электрическое поле, вызывающее его электрический пробой, в данном случае являющийся обратимым (если не наступает тепловой пробой вследствие слишком большой силы тока).
В основе работы стабилитрона лежат два механизма:
Лавинный пробой p-n перехода
Туннельный пробой p-n перехода (Эффект Зенера в англоязычной литературе)
Несмотря на схожие результаты действия, эти механизмы различны, хотя и присутствуют в любом стабилитроне совместно, но преобладает только один из них. У стабилитронов до напряжения 5,6 вольт преобладает туннельный пробой с отрицательным температурным коэффициентом, выше 5,6 вольт доминирующим становится лавинный пробой с положительным температурным коэффициентом. При напряжении, равном 5,6 вольт, оба эффекта уравновешиваются, поэтому выбор такого напряжения является оптимальным решением для устройств с широким температурным диапазоном применения
Пробойный режим не связан с инжекцией неосновных носителей заряда. Поэтому в стабилитроне инжекционные явления, связанные с накоплением и рассасыванием носителей заряда при переходе из области пробоя в область запирания и обратно, практически отсутствуют. Это позволяет использовать их в импульсных схемах в качестве фиксаторов уровней и ограничителей.
Виды стабилитронов:
прецизионные — обладают повышенной стабильностью напряжения стабилизации, для них вводятся дополнительные нормы на временную нестабильность напряжения и температурный коэффициент напряжения (например: 2С191, КС211, КС520);
двусторонние — обеспечивают стабилизацию и ограничение двухполярных напряжений, для них дополнительно нормируется абсолютное значение несимметричности напряжения стабилизации (например: 2С170А, 2С182А);
быстродействующие — имеют сниженное значение барьерной ёмкости (десятки пФ) и малую длительность переходного процесса (единицы нс), что позволяет стабилизировать и ограничивать кратковременные импульсы напряжения (например: 2С175Е, КС182Е, 2С211Е).
Изображают буквами CR.
Существуют микросхемы линейных регуляторов напряжения с двумя выводами, которые имеют такую же схему включения, что и стабилитрон, и зачастую, такое же обозначение на электрических принципиальных схемах.
Параметры
Напряжение стабилизации — значение напряжения на стабилитроне при прохождении заданного тока стабилизации. Пробивное напряжение диода, а значит, напряжение стабилизации стабилитрона зависит от толщины p-n-перехода или от удельного сопротивления базы диода. Поэтому разные стабилитроны имеют различные напряжения стабилизации (от 3 до 400 В).
Температурный коэффициент напряжения стабилизации — величина, определяемая отношением относительного изменения температуры окружающей среды при постоянном токе стабилизации. Значения этого параметра у различных стабилитронов различны. Коэффициент может иметь как положительные так и отрицательные значения для высоковольтных и низковольтных стабилитронов соответственно. Изменение знака соответствует напряжению стабилизации порядка 6В.
Дифференциальное сопротивление — величина, определяемая отношением приращения напряжения стабилизации к вызвавшему его малому приращению тока в заданном диапазоне частот.
Максимально допустимая рассеиваемая мощность — максимальная постоянная или средняя мощность, рассеиваемая на стабилитроне, при которой обеспечивается заданная надёжность.
Минимально допустимый ток стабилизации - минимальный ток, при котором гарантируется ввод p-n-перехода стабилитрона в режим устойчивого пробоя и, как следствие, стабильное значение напряжения стабилизации. При малых обратных токах стабилитрон работает на начальном участке вольт-амперной характеристики, где значение обратного напряжения неустойчиво и может колебаться в пределах от нуля до напряжения стабилизации.
12. Электронный усилитель — усилитель электрических сигналов, в усилительных элементах которого используется явление электрической проводимости в газах, вакууме иполупроводниках. Электронный усилитель может представлять собой как самостоятельное устройство, так и блок (функциональный узел) в составе какой-либо аппаратуры радиоприёмника, магнитофона, измерительного прибора и т. д.