
- •5.2 Вторая гипотеза прочности: гипотеза наибольших удлинений
- •5.3 Третья гипотеза прочности: гипотеза наибольших касательных
- •5.4 Четвертая гипотеза прочности: гипотеза потенциальной энергии
- •Билет37
- •Правила знаков для основных видов деформации
- •Билет42
- •Пределы применимости формулы Эйлера
- •Билет46 Понятие о динамическом действии нагрузки
- •11.2 Удар
- •11.3 Механические свойства материалов при ударе
- •11.5 Влияние конструктивно-технологических факторов на предел усталости
- •49Билет Свободные колебания систем с одной степенью свободы. Колебания без затухания
- •Билет50
- •12.7 Коэффициент динамичности
- •12.8 Виброактивность и виброзащита
Пределы применимости формулы Эйлера
Получив
значение критической силы, мы можем
найти и значение критического напряжения
кр,
разделив критическую силу Ркр
на площадь сечения:
.
Учитывая,
что отношение
равно квадрату минимального радиуса
инерции поперечного сечения
,
получим:
,
где
безразмерный коэффициент называемый
гибкостью стержня:
, (10.6)
П
Рисунок 10.8. Гипербола Эйлера
олученная зависимость (10.5) представляет собой гиперболическую кривую, называемую гиперболой Эйлера.В качестве примера на рисунке 10.8 приведена гипербола Эйлера для стали марки Ст3, для которой модуль упругости Е = 2,1105 МПа. Из графика видно, что при возрастании гибкости стержня критическое напряжение стремиться к нулю и, наоборот, по мере приближения гибкости к нулю критическое напряжение увеличивается.
Однако
вывод формулы Эйлера был построен на
предположении, что напряжения в стержне
не превышают предела пропорциональности:
,
откуда предельное значение гибкости:
.
Значит
формула Эйлера непригодна для стержней
с гибкостью меньшей пр.
Например, для стали марки Ст3 формула
Эйлера становится непригодной, если:
.
То же значение можно получить, рассматривая график гиперболы Эйлера (рис. 10.8).
Потеря устойчивости может происходить и при напряжениях, превышающих предел пропорциональности. Опытным путем было установлено, что для стержней с гибкостью меньше пр действительные критические напряжения ниже критических напряжений, определенных по формуле Эйлера. Поэтому использование формулы Эйлера для стержней, теряющих устойчивость за пределом пропорциональности, не только принципиально неправильно, но и крайне опасно.
Что
бы определить значения критических
напряжений для стержней с гибкостью
меньше пр
проводились многочисленные испытания.
На основании результатов экспериментальных
исследований Ф. Ясинский предложил
эмпирическую формулу, показывающую,
что критические напряжения при таких
гибкостях меняются по закону, близкому
к линейному:
, г
Рисунок 10.9
де a и b величины, зависящие от материала; их значения приводятся в справочниках.Например, для стали марки Ст3 значения данных коэффициентов составляют а = 310 МПа; b = 1,14 МПа.
На рис. 10.9 пунктиром показана прямая, уравнение которой соответствует выражению (10.8). Очевидно, что с правой стороны данная прямая ограничивается гиперболой Эйлера.
При некотором значении гибкости (обозначим его 0) величина кр становиться равной предельному напряжению при сжатии: 0 = т для пластичных материалов или 0 = в для хрупких материалов. Стержни, у которых < 0, называют стержни малой гибкости. Их рассчитывают только на прочность.
Таким образом, для стали марки Ст3 график кр = f()состоит из трех частей: гиперболы Эйлера при > 100, наклонной прямой при 60 < < 100 и горизонтальной прямой при < 60. Горизонтальная прямая соответствует пределу текучести.
Билет46 Понятие о динамическом действии нагрузки
Ранее во всех рассмотренных нами задачах предполагалось, что действующие нагрузки статические, т.е. не изменяющиеся с течением времени. При проектировании машин обычно сталкиваются с деталями, находящимися в неравномерном движении, что приводит к появлению инерционных нагрузок.
Примером статической нагрузки, или статического действия нагрузки, может послужить действие подвешенного на цепи груза. Это действие остается статическим, если груз будет подниматься цепью с постоянной скоростью. Но тот же груз, поднимаемый цепью с ускорением, будет действовать на цепь динамически. Для расчета цепи в данном случае мы должны учесть не только вес груза, но и силу инерции груза.
Д
Рисунок 11.1
ля примера рассмотрим расчет равномерно вращающегося тонкого кольца (рис. 11.1, a).Для расчета примем следующие обозначения: r средний радиус кольца; F площадь поперечного сечения; удельный вес материала; угловая скорость кольца; g ускорение силы тяжести.Рассмотрим бесконечно малый элемент кольца массой dm, вырезанный двумя плоскостями, составляющими центральный угол d (рис. 11.1, б)
Элементарная
сила инерции dФ:
. Элементарная
масса, выраженная через площадь сечения
кольца:
.
Элементарная
сила инерции с учетом (11.2) будет равна:
Для
определения продольной силы N
в поперечном сечении кольца рассмотрим
равновесие половины кольца под действием
двух продольных сил N
и суммы вертикальных составляющих
элементарных сил инерций:
,
откуда
. (11.4)
Полагая,
что в тонком кольце все волокна
растягиваются одинаково, найдем
напряжение в сечении кольца:
. Определим
теперь, на сколько удлинится радиус
вращающегося кольца. Относительное
удлинение волокон кольца равны:
.Из
закона Гука:
.Откуда
. (11.6)