Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТСИ ответы.docx
Скачиваний:
25
Добавлен:
27.09.2019
Размер:
110.8 Кб
Скачать

16. Основные этапы процесса распознавания документов.

Ввод страницы. На этом этапе отсканированный или сфотографированный документ попадает в компьютер в виде изображения. Анализ макета. OCR-приложение определяет, где на странице находятся текст, рисунки, таблицы и т.п., и разбивает ее на блоки. Программа последовательно дробит страницу на все более мелкие блоки: разбивает текст на абзацы, затем на предложения, отдельные слова и символы. В финале анализа макета документ представляет собой набор отдельных символов. Программа запоминает, в каком месте на странице каждый из них находится. Распознавание символов – самый ответственный этап процесса OCR, ведь программа должна правильно идентифицировать все найденные знаки. Используется в тексте буква «В» (и какая – русская или латинская) или это цифра «8»? Если программа допустит ошибку, результат распознавания превратится в абракадабру. Для более точного распознавания текста программы комбинируют различные методы, которые условно делятся на две категории: методы сопоставления с образцом и методы сопоставления признаков (более подробно о них читайте далее). Реконструкция документа. После завершения процесса распознавания программа начинает воссоздавать страницы, с помощью встроенного словаря объединяя отдельные символы в слова, слова в предложения, предложения в абзацы и т.д. Для ускорения процесса используются результаты анализа макета страницы (этап 2). Кроме того, применяя специальные методы, программы пытаются учитывать грамматические особенности текста, чтобы в итоге получились корректные с точки зрения распознаваемого языка предложения. Сохранение документа. OCR-приложение сохраняет распознанный документ в определенном пользователем формате (только текст – TXT; макет страницы – файлы Microsoft Word или PDF). 1-й этап. Сканирование бумажного оригинала. Сканирование большинства документов производится как правило в черно-белом режиме. Если есть необходимость сохранения иллюстрации и рисунков, то производиться сканирование в цвете или в градациях серого. 2-й этап. Распознавание структуры документа. С помощью специального программного обеспечения производится распознавание структуры документа и текста. 3-й этап. Распознавание текста. С помощью программного обеспечения производится распознавание текста. На этом этапе особенно важно правильно установить параметры программы, чтобы минимизировать ошибки распознавания. Количество ошибок распознавания зависит от таких параметров, как полиграфическое качество документа, размер и контрастность текста, сложность взаимного размещения элементов документа. 4-й этап. Проверка правильности распознавания. С помощью встроенных средств производится визуальная проверка соответствия неуверенно распознанных символов.  5-й этап. Проверка орфографических ошибок. С помощью четвертого этапа как правило не удается избавиться от всех ошибок, поэтому необходимо также проводить проверку орфографии, например встроенными средствами Microsoft Word. 6-й этап. Форматирование и оформление результирующего документа. На этом этапе формируется результирующий документ (как правило в Microsoft Word) Устанавливается единообразные значения параметром шрифта и абзацев. Производится размещение и формирование таблиц. Производится ручной дополнительный ввод текста, формул, таблиц, автоматизированное распознавание которых не удалось произвести.

17. Web-камеры и цифровые фотоаппараты.

Web-камера - это стационарно установленная камера, имеющая встроенный web-сервер, сетевой интерфейс и подключающаяся непосредственно к LAN/ WAN/ Internet. Многие сетевые камеры имеют такие дополнительные средства как: детекторы движения, отправка сообщений по e-mail, работа с модемом, подключение внешних датчиков и пр. Пользователи могут обращаться к камере посредством стандартного web браузера. В зависимости от настроек, доступ к видеоизображению, полученному web-камерой, может быть открыт всем пользователям сети или только авторизованным пользователям. Светочувствительный сенсор — это своего рода сердце любой цифровой камеры. Именно он позволяет преобразовывать свет в электрические сигналы, доступные для дальнейшей электронной обработки. Основной принцип действия и ПЗС- и КМОП-сенсоров одинаков: под воздействием света в полупроводниковых материалах рождаются носители заряда, которые впоследствии преобразуются в напряжение. Различие между ПЗС- и КМОП-сенсорами заключается прежде всего в способе накопления и передачи заряда, а также в технологии преобразования его в аналоговое напряжение. Не вдаваясь в подробности конструкции различных типов сенсоров, отметим лишь, что КМОП-сенсоры являются значительно более дешевыми в производстве, но и более «шумными».  Принцип работы Web-камеры схож с принципом работы любой цифровой камеры или фотоаппарата. Кроме оптического объектива и светочувствительного ПЗС- или КМОП-сенсора обязательным является наличие аналого-цифрового преобразователя (АЦП), основное назначение которого — преобразовывать аналоговые сигналы светочувствительного сенсора, то есть напряжение в цифровой код. Кроме того, необходима система цветоформирования. Другим важным элементом камеры является схема, отвечающая за компрессию данных и подготовку к передаче в нужном формате. В Web-камерах видеоданные передаются в компьютер по USB-интерфейсу, то есть заключительной схемой камеры должен быть контроллер USB-интерфейса. Аналого-цифровой преобразователь занимается дискретизацией непрерывного аналогового сигнала. Такие преобразователи характеризуются как частотой отсчетов, определяющих промежутки времени, через которые производится замер аналогового сигнала, так и своей разрядностью. Разрядность АЦП – это количество бит, использующихся для представления сигнала. Например, если используется 8-разрядный АЦП, то для представления сигнала имеется 8 бит, которые позволяют задать 256 различных значений. При использовании 10-разрядного АЦП имеется возможность дискретно задавать 1024 различных уровня сигнала. Учитывая низкую пропускную способность USB-шины (всего 12 Мбит/с, из которых Web-камера использует не более 8 Мбит/с), данные необходимо сжимать перед непосредственной передачей в компьютер. Очевидность этого следует из простого расчета. При разрешении кадра 320×240 пикселов и глубине цвета 24 бита размер кадра в несжатом виде будет составлять 1,76 Мбит. При ширине полосы пропускания USB-канала 8 Мбит/с в несжатом виде можно передавать кадры со скоростью не более 4,5 кадров/с. Однако для получения качественного видео необходима скорость передачи 24 или более кадров/с. Таким образом, становится понятно, что без аппаратного сжатия передаваемой информации функционирование камеры было бы невозможно. Поэтому любой контроллер камеры должен обеспечивать необходимую компрессию данных для передачи их по USB-интерфейсу. Собственно компрессия — это и есть основное назначение USB-контроллера. Обеспечивая необходимую компрессию в реальном времени, контроллер, как правило, позволяет передавать видеопоток со скоростью 10-15 кадров/с при разрешении 640×480 и со скоростью 30 кадров/с при разрешении 320×240 и меньшем. Конструкция цифрового фотоаппарата во многом повторяет конструкцию пленочной камеры. Фотоаппараты для узкой 35-мм пленки в зависимости от устройства видоискателя подразделяются на шкальные камеры с установкой резкости по шкале, нанесенной на фокусировочное кольцо объектива, на дальномерные камеры, в которых объектив наводится на фокус при помощи оптического дальномера, и на зеркальные фотоаппараты, в которых фокусировка объектива производится по изображению на матовом стекле, встроенном в оборачивающую пентапризму. По типу основного объектива пленочные фотоаппараты подразделяются на камеры со сменным объективом и на фотоаппараты с жестковстроенным объективом. В настоящее время шкальные и отчасти дальномерные фотоаппараты не производятся - если не принимать во внимание дорогие механические дальномерные камеры, производимые для профессиональных применений компаниями Leica и Cosina (в модельном ряду камер компании Cosina есть один шкальный фотоаппарат Voigtlander Bessa-L). Место шкальных и дальномерных фотоаппаратов занято компактными камерами с автоматической фокусировкой (теми самыми "мыльницами") и зеркальными фотоаппаратами любительского класса. Цифровые фотоаппараты в целом соответствуют устоявшейся классификации пленочных камер. Правда, есть и отличия - наряду с "настоящими" зеркальными фотоаппаратами встречаются и камеры "псевдозеркальные", не имеющие аналогов среди пленочной аппаратуры. В "псевдозеркальных" цифровых фотоаппаратах функцию подъемного зеркала выполняет расщепляющая световой поток призма, расположенная между объективом и светочувствительным сенсором. Призма обладает свойством полупрозрачности. Часть светового потока используется в подобных камерах для построения изображения на матовой поверхности оборачивающей пентапризмы, часть - для экспонирования сенсора. В результате страдает светочувствительность сенсоров "псевдозеркальных" фотоаппаратов (оптические потери приходится компенсировать электронным способом), но упрощается конструкция камеры, уменьшается стоимость и одновременно повышается надежность, поскольку нет механического узла подъема зеркала. Пример подобной "псевдозеркальной" камеры выпускавшийся несколько лет назад фотоаппарат Hewlett-Packard PhotoSmart C912, сконструированный совместно с компанией Asahi Optical, выпускающей фототехнику марки Pentax. С другой стороны, среди цифровых фотоаппаратов есть камеры, напрочь лишенные оптического видоискателя. Вместо телескопического или зеркального видоискателя в них используется встроенный контрольный дисплей, выполняющий функции матового стекла, по которому можно судить о компоновке кадра и наводке на резкость. Еще необычней устроены видоискатели дорогих фотоаппаратов просьюмерского класса (то есть предназначенных для требовательных фотолюбителей), вроде той же камеры Sony DSC-R1. В эти фотоаппараты помимо большого контрольного дисплея встроен цветной дисплей очень небольшого размера, который выполняет функции окуляра телескопического видоискателя. То есть кадрирование и проверка наводки объектива на фокус осуществляется по небольшому, размером с почтовую марку, дисплею, который рассматривают через увеличительную линзу, приближая окуляр видоискателя к глазу.