
- •1.Определение и общая характеристика предмета.
- •2.1 Тпр: Связь с другими научными направлениями.
- •2.Основные понятия системного анализа и исо.
- •3.Организация, операция, оператор, решение.
- •1.Исходные понятия и определения.
- •1.1 Организация, управление, операция, оператор, решение.
- •4. Ошибки подмены цели и проблема критерия эффективности.
- •5. Цель, альтернатива, критерий. Рационализация и реорганизация.
- •1.2. Основные понятия: цель, альтернатива, критерии, процессы, связанные с принятием решений.
- •6. Решение. Процесс принятия решений и принятие решения. Выбор и исход. Роль человеческого фактора.
- •7. Системный подход и системный анализ. Примеры.
- •8. Метод Монте-Карло. Случайные и псевдослучайные числа.
- •9. Моделирование дискретных событий {Si} по их вероятностям {p(Si)}. Пример. Равновероятный закон распределения для Ксобытий.
- •10. Моделирование непрерывных событий во времени по заданному закону плотности распределения.
- •11. Системы массового обслуживания :два подхода к решению задач.
- •§ 18. Задачи теории массового обслуживания. Классификация систем массового обслуживания
- •12. Альтернативная схема процесса выбора решения.
- •13. Моделирование процесса выбора решений.
- •14. Разработка механизма случайного выбора для следующих событий: - числа заявок; времени поступления заявок; времени обслуживания заявок.
- •15. Граф состояний и переходов для смо. (клпр № 3)
- •16. Смо. Основные понятия и параметры системы.
- •Основные понятия смо
- •17. Вероятностный смысл параметров смо.
- •18. 0Бозначения по Кендалу.Смо типа м/м/n/m. Базовая модель смо и классификация по Кендалу
- •19. Граф гибели – размножения, марковская цепь событий.
- •20. Реальные системы (процессы) и их представление в смо (на примере объекта с ограниченным множеством состояний).
- •21. Дифференциальные уравнения Колмогорова для смо.
- •§ 17. Уравнения Колмогорова для вероятностей состояний. Финальные вероятности состояний
- •22. Потоки событий и их свойства (стационарность, отсутствие последействия, ординарность).
- •§ 16. Потоки событий
- •23. Экспоненциальное распределение, как частный случай распределения Пуассона.
- •24. Элемент вероятности события.
- •25. Потоки Пальма и Эрланга для многоканальной смо с отказами. Многоканальная смо с отказами
- •Потоки Пальма и Эрланга
- •26. Формулы Эрланга.
- •19.9. Установившийся режим обслуживания. Формулы Эрланга
- •27. Уравнение Эрланга для многоканальной смо с отказами.
- •34. Основные понятия теории статистических решений (природа, выбор стратегии, смешанная стратегия, средние потери, минимакс, априорные и апостериорные данные, эксперимент).
- •40. Розыгрыш решений и функция потерь в играх средствами имитационного моделирования. Тайна хода.
- •41. Априорные вероятности и принцип Байеса (на примере задачи о технологической линии). Принцип Байеса
- •42. Построение априорной прямой по принципу Байеса для s - игры.
- •43. Понятие о линейном программировании (л.П.) на примере задачи 2 завода 3 стройки (2x3) (задача о бетоне).
- •1. Основные свойства и модели линейного программирования
- •Граф-схема решения задачи линейного программирования
- •1.2. Алгебраическая модель решения
- •1.3. Геометрическая форма представления
- •46. Транспортная задача.
- •47. Матричная игра, как пример двойственности задач л.П.
- •48. Экономическое содержание двойственности.
- •3.4. Экономическое содержание двойственности
- •49. 03Лп. Геометрическая интерпретация (одр и основная прямая).
- •2.1. Иллюстрация процесса поиска решения
- •50. Выпуклость одр и анализ плоскостной задачи озлп. Вырожденный случай.
- •51 Переход от неравенств к озлп.
- •52. Идея симплекс метода. Стандартная таблица.
- •53. Транспортная таблица и метод Северо-Западного угла.
- •4.1. Составление опорного плана тз по методу северо-западного угла (сзу)
- •54. Вырожденный и невырожденный случаи транспортной — задачи, циклический перенос и цена цикла.
- •4.5. Улучшение плана по методу циклических перестановок
- •55. Метод потенциалов. Псевдостоимость. Условия оптимальности плана.
- •4.4. Проверка лучшего опорного плана на оптимальность
- •2. Трудности решения злп.
- •3. Классификация задач оптимизации.
27. Уравнение Эрланга для многоканальной смо с отказами.
СМО с отказами (задача Эрланга)
Рассматривается N-канальная СМО с отказами:
Любая заявка может быть обслужена любым свободным каналом. Если все каналы заняты, заявка немедленно получает отказ в обслуживании и покидает систему (теряется). Интенсивности входных и выходных потоков:
Считаем, что в этой системе имеются следующие потоки событий:
1)поступление заявок на вход СМО из источника заявок G;
2)обслуживание заявок в каналах.
Будем считать, что первый и второй потоки событий являются простейшими потоками с экспоненциальными законами распределения. Интервал поступления и обслуживания заявок соответственно имеют следующие характеристики:
1)интенсивность потока поступающих заявок характеризуется λ
2)интенсивность обслуживания одним каналом:
-
мат.ожидание
длительности обслуживания
Т.о. входной поток с интенсивностью λ и поток обслуживания с интенсивностью µ распределены по экспоненциальному закону и следовательно данные потоки являются простейшими, а сами процессы в системе Марковскими. Представим граф схему переходов для этого случая:
Состояния СМО в данном случае нумеруются по числу заявок, находящихся в СМО (в силу отсутствия очереди состояния, в котором находится система, совпадает с числом занятых каналов)
S0 - все каналы свободны, система свободна
S1 - занят один канал
Sk - заняты k каналов, остальные (n-k) свободны
Sn - заняты все n каналов
Из состояния Si-1 всегда с интенсивностью входного потока λ система переходит в следующее состояние Si, т.е. в данном случае будет заняе еще один канал и интенсивность перехода в следующее состояние равно интенсивности входного потока λ. Интенсивность обратного перехода возрастает с ростом числа параллельно работающих каналов. Чем больше их работает, тем интенсивнее процесс их освобождения. Для простейших потоков имеем:
Данная схема называется схемой гибели и размножения. Такое название происходит от того, что связаны соседние состояния. Математический аппарат - это Марковский процесс, с дискретными состояниями и непрерывным временем. Для заданной СМО матрица интенсивностей Λ имеет вид:
Пользуясь матрицей Λ запишем уравнения, которые позволяют рассчитать вероятности пребывания системы в каждом из указанных состояний. Распределение вероятностей P0,P1,…,Pn по состояниям S0,…,Sn определяется как решение системы дифференциальных уравнений.
P’(t)=P(t)Λ с начальными условиями:
P0(0)=1
Pi(0)=0, i=1,n;
Эти уравнения называются уравнениями Эрланга. Вероятности Рi характеризуют среднюю загрузку системы, в частности, Pn - это вероятность получения отказа в обслуживании, т.е. вероятность того, что все каналы заняты и все поступающие заявки будут потеряны. Тогда q=1-Pn - это вероятность обслуживания.
Зная эти вероятности, можно рассчитать различные характеристики эффективности системы.
А - среднее число заявок, обслуживаемых СМО в единицу времени или абсолютная пропускная способность СМО
Q - относительная пропускная способность СМО или вероятность обслуживания поступившей заявки
28 СМО типа M/M/1/m в случае λ/µ/1/m.
29 СМО типа М/М/n/m в случав λ/µ/n/m.
30 Учет нетерпеливости и брака в обслуживании.
31 3амкнутая СМО типа M/M/1/m.
32 Замкнутая СМО типа M/М/n/m.
33. Основные понятия теории игр: конфликтная ситуация, игра, игроки, ход (личный, случайный), правила игры.
Лица, принимающие участие в игре, называются игроками.
Теория игр изучает математические модели конфликтных ситуаций. Частная задача теории игр - матричная игра двух лиц, интересы которых противоположны.
Игра - упрощенная формализованная модель реальной конфликтной ситуации.
Стратегия игрока - его правила действия в каждой из возможных ситуаций игры.
Личный ход — это сознательный выбор игроком одного из возможных действий(например, ход в шахматной игре).
Некоторые из "ходов", или индивидуальных действий, в ходе игры могут носить случайный характер. Наглядной иллюстрацией может служить известная игра в покер: начальная сдача карт представляет собой случайный ход.
Ситуация, в которой эффективность принимаемого одной стороной решения зависит от действий другой стороны, называется конфликтной. Конфликт всегда связан с определенного рода разногласиями (это не обязательно антагонистическое противоречие).