Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
билеты по математике.docx
Скачиваний:
17
Добавлен:
27.09.2019
Размер:
990.21 Кб
Скачать

Билет № 24 Сложение векторов. Умножение вектора на число. Скалярное произведение векторов.

   Определение 10.6   Суммой векторов a и b называется такой третий вектор c, что при совмещенных началах этих трех векторов, векторы a и b служат сторонами параллелограмма, а вектор c -- его диагональю (рис. 10.2).         

Рис.10.2.Сложение векторов

Сложение векторов в соответствии с рисунком 10.2 называется сложением по правилу параллелограмма. Однако бывает более удобным использовать для сложения правило треугольника, которое становится ясным из рисунка 1.3. Из того же рисунка видно, что результаты сложения по правилу параллелограмма и по правилу треугольника одинаковы.

Рис.10.3.Правило треугольника

        Определение 10.7   Вектор b называется противоположным вектору a, если a и b коллинеарные, имеют противоположные направления и .         

Вектор, противоположный вектору a, обозначается , то есть .

        Определение 10.8   Разностью векторов a и b называется сумма .         

Разность обозначается , то есть .

        Определение 10.9   Произведением вектора a на вещественное число называется вектор b, определяемый условием

1) и, если , то еще двумя условиями:

2) вектор b коллинеарен вектору a;

3) векторы b и a направлены одинаково, если , и противоположно, если .         

Произведение вектора a на число обозначается (рис 1.4).

Рис.10.4.Умножение вектора на число

        Замечание 10.1   Когда речь идет о связи векторов с числами, то иногда числа называют скалярами. Таким образом,  определение 10.9 задает умножение вектора на скаляр.         

Рассмотрим некоторые свойства операций сложения и умножения вектора на число. Часть из них, которые будут особенно важны при обобщении понятия вектора, выделим в отдельную теорему.

        Теорема 10.1   Для любых векторов и любых вещественных чисел выполняются следующие свойства: 1) (свойство коммутативности операции сложения); 2) (свойство ассоциативности операции сложения); 3) ; 4) ; 5) (свойство ассоциативности по отношению к числам); 6) (свойство дистрибутивности по отношению к умножению на число); 7) (свойство дистрибутивности по отношению к умножению на вектор; 8) .

        Доказательство.     Свойство 1 следует из того, что при сложении векторов по правилу параллелограмма (рис. 10.2) порядок слагаемых не влияет на построение параллелограмма. Доказательство свойства 2 следует из рисунка 10.5.

Рис.10.5.Ассоциативность сложения

Свойства 3 и 4 очевидны при сложении векторов по правилу треугольника.

Докажем свойство 5. Векторы, стоящие в обеих частях доказываемого равенства, имеют одинаковую длину . Если это произведение равно нулю, то векторы в правой и левой частях доказываемого равенства нулевые и, следовательно, равны друг другу. В противном случае векторы и коллинеарны вектору a и имеют с ним одинаковое направление, если числа и одного знака, и направление, противоположное вектору a, если и разного знака. Следовательно, .

Свойство 6 очевидно, если . Если и векторы a и b неколлинеарны, то это свойство вытекает из подобия треугольников на рисунке 10.6.

Рис.10.6.Свойство дистрибутивности

Случаи, когда или a и b коллинеарны, предоставляем проанализировать читателю самостоятельно.

Для доказательства свойства 7 заметим, что векторы и коллинеарны. Без ограничения общности можно считать, что (в противном случае поменяем местами и в доказываемом равенстве).

Пусть и одного знака. Тогда , .

Пусть и имеют разные знаки. Тогда , . Получили, что в обоих случаях.

Векторы f и g имеют одно направление. Оно совпадает с направлением a при и противоположно при . Следовательно, . Свойство 7 доказано.

Свойство 8 очевидным образом вытекает из  определения 10.9 произведения вектора на число.     

Из свойства ассоциативности следует, что в сумме векторов, содержащей три и более слагаемых, можно скобки не ставить. Как найти сумму нескольких слагаемых, не используя попарных сумм, видно из рисунка 10.7.

Рис.10.7.Сумма нескольких слагаемых

Сформулируем еще несколько очевидных свойств операций сложения и умножения вектора на число: 9) равенство верно тогда и только тогда, когда или , или ; 10) вектор, противоположный вектору a, равен , то есть ; 11) для любых векторов a и b существует такой вектор x, что .

Определение скалярного произведения векторов.

Определение.

Скалярным произведением двух векторов называется действительное число, равное произведению длин умножаемых векторов на косинус угла между ними.

Скалярное произведение векторов и будем обозначать как . Тогда формула для вычисления скалярного произведения имеет вид , где и - длины векторов и соответственно, а - угол между векторами и .

Из определения скалярного произведения видно, что если хотя бы один из умножаемых векторов нулевой, то .

Вектор можно скалярно умножить на себя. Скалярное произведение вектора на себя равно квадрату его длины, так как по определению .

Определение.

Скалярное произведение вектора на себя называется скалярным квадратом.

Формулу для вычисления скалярного произведения можно записать в виде , где - числовая проекция вектора на направление вектора , а - числовая проекция вектора на направление вектора .

Таким образом, можно дать еще одно определение скалярного произведения двух векторов.

Определение.

Скалярным произведением двух векторов и называется произведение длины вектора на числовую проекцию вектора на направление вектора или произведение длины вектора на числовую проекцию вектора на направление вектора .

Это определение эквивалентно первому.

К началу страницы

Скалярное произведение в координатах.

Покажем как скалярное произведение вычисляется через координаты векторов в прямоугольной системе координат на плоскости и в пространстве.

Определение.

Скалярным произведением двух векторов на плоскости или в трехмерном пространстве в прямоугольной системе координат называется сумма произведений соответствующих координат векторов и .

То есть, для векторов на плоскости в прямоугольной декартовой системе координат формула для вычисления скалярного произведения имеет вид , а для векторов в трехмерном пространстве скалярное произведение в координатах находится как .

Таким образом, мы имеем третье определение скалярного произведения. Покажем, что это определение эквивалентно первому.

Сначала докажем равенства для векторов на плоскости, заданных в прямоугольной декартовой системе координат.

Отложим от начала координат (точка О) векторы и . Тогда (при необходимости обращайтесь к статьям операции над векторами и их свойства и операции над векторами в координатах).

Будем считать точки О, А и В вершинами треугольника ОАВ. По теореме косинусов мы можем записать . Так как , то последнее равенство можно переписать как , а по первому определению скалярного произведения имеем , откуда .

Вспомнив формулу вычисления длины вектора по координатам, получаем

Абсолютно аналогично доказывается справедливость равенств для векторов , заданных в прямоугольной системе координат трехмерного пространства.

Формула скалярного произведения векторов в координатах позволяет заключить, что скалярный квадрат вектора равен сумме квадратов всех его координат: на плоскости , в пространстве .

К началу страницы

Свойства скалярного произведения.

Для любых векторов и справедливы следующие свойства скалярного произведения:

  1. свойство коммутативности скалярного произведения ;

  2. свойство дистрибутивности или ;

  3. сочетательное свойство или , где - произвольное действительное число;

  4. скалярный квадрат вектора всегда не отрицателен , причем тогда и только тогда, когда вектор нулевой.

Эти свойства очень легко обосновать, если отталкиваться от определения скалярного произведения в координатной форме и от свойств операций сложения и умножения действительных чисел.

Для примера докажем свойство коммутативности скалярного произведения . По определению и . В силу свойства коммутативности операции умножения действительных чисел, справедливо и , тогда . Следовательно, , что и требовалось доказать.

Аналогично доказываются остальные свойства скалярного произведения.

Следует отметить, что свойство дистрибутивности скалярного произведения справедливо для любого числа слагаемых, то есть, и , откуда следует