Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
механика шпоры.docx
Скачиваний:
18
Добавлен:
27.09.2019
Размер:
6.44 Mб
Скачать

44. Перемещения при кручении , их оценка, расчёт валов на прочность.

Во многих случаях вал должен быть рассчитан не только на прочность, но и на жесткость при кручении.

Рассмотрим брус, жестко защем­ленный одним концом и нагруженный на свободном конце скручивающим мо­ментом М (рис. 19.17). При деформацииб руса его поперечные сечения повер­нутся на некоторые углы по отношению к своему первоначальному положению или, что то же, по отношению к непо­движному сечению (заделке). Угол по­ворота будет тем больше, чем дальше отстоит данное сечение от заделки. Так, для произвольного сечения I, отстоящего от заделки на расстоянии Z, он равен , для сечения II– .Здесь – угол поворота сечения II относительно I или угол закручивания элемента бруса длиной .

Вообще угол поворота произвольного сечения равен углу за­кручивания части бруса, заключенной между этим сечением и за­делкой. Таким образом, угол поворота торцового сечения пред­ставляет собой полный угол закручивания рассматриваемого бруса.

За меру жесткости при кручении принимают относительный угол закручивания (угол закручивания на единицу длины) вала, обозначаемый (встречается обозначение ).

(19.16)

Угол закручивания бруса постоянного диаметра при одинако­вом во всех поперечных сечениях крутящем моменте равен

(19.17)

где lдлина рассматриваемого участка, мм.

В отличие от допускаемого напряжения, зависящего в первую очередь от материала вала, допускаемый угол закручивания зави­сит от назначения вала.

Значения допускаемых углов закручивания, встречающихся в различных отраслях машиностроения, весьма разнообразны; наибо­лее распространены значения

Условие жесткости при кручении имеет вид

(19.18)

– условно жесткость сечения круглого бруса при кручении. Модуль сдвига (G) характеризует жесткость материала, а полярный момент инерции ( ) является геометрической характеристикой жесткости бруса.

При проектном расчете отсюда определяют требуемое значение , а затем по формуле (19.19) или (19.20) вычисляют диаметр ва­ла. Из двух значений диаметра вала,

определенных из расчетов на прочность и жесткость, в качестве окончательного (исполнитель­ного размера) должен быть, конечно, принят больший.

(19.19)

Для круга

45. Вид нагружения «изгиб», внутренние силы, напряжения, их оценка.

Условия прочности при прямом поперечном изгибе.

Балки рассчитывают на прочность по наи­большим нормальным напряжениям, возникающим в их поперечных сечениях. При поперечном изгибе балок наряду с нормальными, как известно, возникают и касательные напряжения, но они в подавля­ющем большинстве случаев невелики и при расчетах на прочность не учитываются.

Расчет балок из пластичных материалов.

Прочность балки из пластичного материала обеспечена, если наибольшие по абсолютному значению нормальные напряжения, воз­никающие в опасном поперечном сечении, не превышают допускаемых. Для балки, поперечные размеры которой по всей длине постоянны (пока только такими балками и ограничимся), опасное сечение то, в котором возникает наибольший по модулю изгибающий момент.

Наибольшие нормальные напряжения возникают в точках опас­ного поперечного сечения, максимально удаленных от нейтральной оси. Будем называть эти точки опасными. – расстояние от опасной точки до нейтральной оси. Тогда получим условие проч­ности в виде

(19.5)

где – максимальное нормальное напряжение;

– максимальный изгибающий момент;

– момент инерции относительно оси ОХ – осевой момент инерции;

– допускаемое напряжение, принимаемое при статическом нагружении таким же, как и в случае растяжения (сжатия) бруса из того же материала.

В случае если поперечное сечение балки симметрично отно­сительно нейтральной оси, оказывается возможным привести форму­лу (19.5) к более удобному виду. Для указанных сечений гдеh – высота сечения (размер в направлении, перпен­дикулярном нейтральной оси), следовательно,

Разделим числитель и знаменатель этого выражения :

Введем обозначение

и получим окончательное условие прочности в следующем виде:

(19.6)

– осевой момент сопротивления, или момент сопротивления при изгибе.

Момент сопротивления– это геометрическая характеристика, прочности бруса, работающего на прямой изгиб. Действительно, чем больше момент сопротивления, тем меньше напряжения, возника­ющие в поперечном сечении балки при данной нагрузке.

Формула представляет собой зависимость для проверочного расчета.

Значения моментов сопротивления прокатных профилей (двутавров и швеллеров) приведены в таблицах соответствующих ГОСТов.

Моменты сопротивления круга, кольца и прямоугольника:

а) круг

или

(19.7)

б )кольцо (рис. 19.11)

или

(19.8)

в) прямоугольник

или

(19.9)

h – сторона прямоугольника, перпендикулярная оси, относительно которой вычисляется момент сопротивления.

Из приведенных примеров следует, что сечение надо распола­гать таким образом, чтобы силовая линия совпадала с той из главных осей, относительно которой момент инерции минимален, или, что то же самое, так, чтобы ось, относительно которой мо­мент инерции максимален, была нейтральной осью сечения. Более кратко это можно сформулировать так: следует стремиться к тому, чтобы изгиб бруса происходил в плоскости его наибольшей жесткости.