Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы физика.docx
Скачиваний:
7
Добавлен:
26.09.2019
Размер:
1.14 Mб
Скачать
  1. Соотношение неопределенностей. Волновая функция.

В 1927 г. В.Гейзенберг открыл так называемые соотношения неопределенностей, в соответствии с которыми неопределенности координаты и импульса связаны между собой соотношением:

, где , h постоянная Планка.

Своеобразие описания микромира в том, что произведение неопределенности (точности определения) положения Δx и неопределенности (точности определения) импульса Δpx всегда должно быть равно или больше константы, равной – . Из этого следует, что уменьшение одной из этих величин должно приводить к увеличению другой. Хорошо известно, что любое измерение сопряжено с определенными ошибками и совершенствуя приборы измерения, можно уменьшать погрешности, т. е. повышать точность измерения. Но Гейзенберг показал, что существуют сопряженные (дополнительные) характеристики микрочастицы, точное одновременное измерение которых, принципиально невозможно. Т.е. неопределенность – свойство самого состояния, оно не связано с точностью прибора.

Для других сопряженных величин – энергии E и времени t соотношения неопределенностей, имеет вид:

Это означает, что при характерном времени эволюции системы Δt , погрешность определения ее энергии не может быть меньше чем . Из этого соотношения следует возможность возникновения из ничего, так называемых, виртуальных частиц на промежуток времени меньший, чем и обладающих энергией ΔE. При этом закон сохранения энергии не будет нарушен. Поэтому по современным представлениям вакуум это не пустота, в которой отсутствуют поля и частицы, а физическая сущность, в которой постоянно возникают и исчезают виртуальные частицы.

Одним из основных принципов квантовой механики является принцип неопределенностей, открытый Гейзенбергом. Получение информации об одних величинах, описывающих микрообъект, неизбежно ведет к уменьшению информации о других величинах, дополнительных к первым. Приборы, регистрирующие величины, связанные соотношениями неопределенности, разного типа, они дополнительны друг к другу. Под измерением в квантовой механике подразумевается всякий процесс взаимодействия между классическим и квантовыми объектами, происходящий помимо и независимо от какого-либо наблюдателя. Если в классической физике измерение не возмущало сам объект, то в квантовой механике каждое измерение разрушает объект, уничтожая его волновую функцию. Для нового измерения объект нужно готовить заново. В этой связи Н. Бор выдвинул принцип дополнительности, суть которого в том, что для полного описания объектов микромира необходимо использование, двух противоположных, но дополняющих друг друга представлений.

Волновая функция.

Волнова́я фу́нкция, или пси-функция — комплекснозначная функция, используемая в квантовой механике для описания чистого состояния системы. Является коэффициентом разложения вектора состояния по базису (обычно координатному):

где — координатный базисный вектор, а — волновая функция в координатном представлении.

Физический смысл волновой функции заключается в том, что согласно копенгагенской интерпретации квантовой механики плотность вероятности нахождения частицы в данной точке пространства в данный момент времени считается равной квадрату абсолютного значения волновой функции этого состояния в координатном представлении.

Физический смысл волновой функции.

В координатном представлении волновая функция зависит от координат (или обобщённых координат) системы. Физический смысл приписывается квадрату её модуля , который интерпретируется как плотность вероятности (для дискретных спектров — просто вероятность) обнаружить систему в положении, описываемом координатами в момент времени :

Тогда в заданном квантовом состоянии системы, описываемом волновой функцией , можно рассчитать вероятность того, что частица будет обнаружена в любой области пространства конечного объемаV: