
- •1.Закон сохранения электрического заряда
- •2. Закон Кулона. Принцип суперпозиции
- •3. Электростатическое поле. Напряженность электростатического поля
- •6. Поток вектора напряженности. Теорема Гаусса для электростатического поля в вакууме
- •7. Работа электрического поля.
- •8. Циркуляция вектора напряженности электростатического поля
- •9. Потенциал электростатического поля. Эквипотенциальные поверхности
- •10. Разность потенциалов.
- •11. Проводники в электростатическом поле
- •12.Экранирование
- •13. Электроемкость уединеного проводника.
- •14. Конденсаторы
- •15. Потенциальные и емкостный коэффициенты
- •16. Сторонние и связанные заряды. Поляризация и ее типы
- •17. Поляризованность.
- •18. Теорема Гаусса для поляризованности. Диэлектрическая восприимчивость.
- •19. Электрическое смещение. Теорема Гаусса для электростатического поля в диэлектрике
- •20. Условия на границе раздела двух диэлектрических сред
- •21. Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля
- •3. Энергия заряженного конденсатора.
- •22. Энергия электростатического поля.
- •23. Электрический ток, сила и плотность тока
- •24. Закон Ома для однородного проводника в дифференциальной и интегральной форме.
- •25. Закон Джоуля-Ленца
- •26. Сторонние силы. Эдс закон Ома для неоднородного участка
- •27. Правила Кирхгофа для разветвленных цепей
- •28. Элементы классической теории электропроводности
- •29. Магнитное поле и его характеристики
- •30. Закон Био — Савара — Лапласа и его применение к расчету магнитного поля
- •31. Контур с током. Магнитный момент контура с током. Сила и вращающий момент, действующий на виток.
- •32. Применение закона Био-Савара-Лапласа
- •2. Магнитное поле в центре кругового проводника с током
- •33. Закон Ампера. Взаимодействие параллельных токов
- •34. Работа по перемещению проводника и контура с током в магнитном поле
- •35. Сила Ампера
- •36. Движение заряженных частиц в магнитном поле
- •37. Поток вектора магнитной индукции.
- •38. Теорема Гаусса для магнитного поля
- •39. Магнетики. Классификация и их свойства
- •40. Явление намагничивания и его характеристики
- •41. Намагниченность. Магнитное поле в веществе
- •42. Вектор напряженности магнитного поля и теорема о его циркуляции
- •43. Взаимосвязь между намагниченностью и напряженностью магнитного поля
- •45. Ферромагнетики и их свойства
- •46. Природа ферромагнетизма
- •47. Явление электромагнитной индукции (опыты Фарадея)
- •49. Основной закон электромагнитной индукции. Правило Ленца. Потокосцепление
- •50. Индуктивность контура. Самоиндукция
- •51. Переходные процессы в цепях с емкостью и индуктивностью
- •52. Взаимная индукция
- •53. Квазистационарные токи. Свободные колебания в контуре без активного сопротивления.
- •54. Свободные затухающие колебания. Логарифмический декремент затухания. Добротность.
- •55. Вынужденные электромагнитные колебания. Резонансные кривые
- •56. Неразветвленные цепи переменного тока. Векторные диаграммы
- •57. Генератор переменного тока
- •58. Фарадеевская и максвелловская трактовка явления электромагнитной индукции. Первое уравнение Максвелла
- •59. Ток смещения. Третье уравнение Максвелла
- •60. Система уравнений Максвелла в интегральной форме
- •61. Система уравнений Максвелла в дифференциальной форме
- •62. Плотность потока энергии электромагнитных волн. Вектор Умова-Пойтинга
31. Контур с током. Магнитный момент контура с током. Сила и вращающий момент, действующий на виток.
Силы
Ампера, действующие на боковые стороны
рамки, будут создавать вращающий момент,
величина которого пропорциональна
магнитной индукции, силе тока в рамке,
ее площади S и зависит от угла a между
вектором и нормалью к площади:
.
Направление нормали выбирают так, чтобы
в направлении нормали перемещался
правый винт при вращении по направлению
тока в рамке. Максимальное значение
вращательный момент имеет тогда, когда
рамка устанавливается перпендикулярно
магнитным силовым линиям:
Это выражение также можно использовать
для определения индукции магнитного
поля:
Величину,
равную произведению
,
называют магнитным моментом контура
Рm.
Магнитный момент есть вектор, направление
которого совпадает с направлением
нормали к контуру. Тогда вращательный
момент можно записать
При угле a = 0 вращательный момент равен
нулю. Значение вращательного момента
зависит от площади контура, но не зависит
от его формы. Поэтому на любой замкнутый
контур, по которому течет постоянный
ток, действует вращательный момент М,
который поворачивает его так, чтобы
вектор магнитного момента установился
параллельно вектору индукции магнитного
поля.
На проводник с током, находящийся в магнитном поле, действует сила, равная F = I·L·B·sina где I - сила тока в проводнике; B - модуль вектора индукции магнитного поля; L - длина проводника, находящегося в магнитном поле; a - угол между вектором магнитного поля и направлением тока в проводнике. Силу, действующую на проводник с током в магнитном поле, называют силой Ампера. Максимальная сила Ампера равна: F = I·L·B ей соответствует a = 90. Направление силы Ампера определяется по правилу левой руки
32. Применение закона Био-Савара-Лапласа
1
.
Магнитное поле прямого тока — тока,
текущего по тонкому прямому проводу
бесконечной длины. В произвольной точке
А,
удаленной
от оси проводника на расстояние R,
векторы
dB
от всех элементов тока имеют одинаковое
направление, перпендикулярное плоскости
чертежа («к нам»). Поэтому сложение
векторов dB
можно заменить сложением их модулей. В
качестве постоянной интегрирования
выберем угол а (угол между векторами dl
и r),
выразив через него все остальные
величины. Из рис. 165 следует, что
(радиус дуги CD
вследствие
малости dl
равен
r,
и
угол FDC
по
этой же причине можно считать прямым).
Получим, что магнитная индукция,
создаваемая одним элементом проводника,
равна
Так как угол а для всех элементов прямого
тока изменяется в пределах от 0 до Пи,
то,
Следовательно, магнитная индукция поля
прямого тока
2. Магнитное поле в центре кругового проводника с током
Как следует из рисунка, все элементы кругового проводника с током создают в центре магнитное поле одинакового направления — вдоль нормали от витка.
П
оэтому
сложение векторов dB
можно заменить сложением их модулей.
Так как все элементы проводника
перпендикулярны радиусу-вектору (sin=1)
и расстояние всех элементов проводника
до центра кругового тока одинаково и
равно R,
то,
Тогда
Следовательно,
магнитная индукция поля в центре
кругового проводника с током