Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
exams phys.doc
Скачиваний:
7
Добавлен:
26.09.2019
Размер:
391.68 Кб
Скачать

20. Электрический разряд в разряженных газах. Газосветные трубки, лампы дневного света.

Электрический разряд в газах, прохождение электрического тока через газовую среду под действием электрического поля, сопровождающееся изменением состояния газа. Многообразие условий, определяющих исходное состояние газа (состав, давление и т. д.), внешних воздействий на газ, форм, материала и расположения электродов, геометрии возникающего в газе электрического поля и т. п. приводит к тому, что существует множество видов Э. р. в г., причём его законы сложнее, чем законы прохождения электрического тока в металлах и электролитах. Э. р. в г. подчиняются Ома закону лишь при очень малой приложенной извне разности потенциалов, поэтому их электрические свойства описывают с помощью вольтамперной характеристики (рис. 1и 3). Газы становятся электропроводными при их ионизации. Если Э. р. в г. происходит только при вызывающем и поддерживающем ионизацию внешнем воздействии (при действии т. н. внешних ионизаторов), его называют несамостоятельным газовым разрядом. Э. р. в г., продолжающийся и после прекращения действия внешнего ионизатора, называется самостоятельным. Газосветная лампа (рис. 200) представляет собой стеклянную трубку 1, внутренние стенки которой покрыты тонким слоем люми­нофора — состава, светящегося при облучении. В качестве люмино­фора обычно используются сернистые соединения цинка, магния, кальция и стронция. Воздух из трубки лампы удален, а ее прост­ранство заполнено парами ртути и газом аргоном.

На концах трубки находится два электрода 2 в виде проволоч­ных нитей, к которым подводится электрическая энергия от сети

Газосветная трубка - высоковольтный газоразрядный источник света, в котором используется излучение положительного столба тлеющего разряда. При подключении высокого напряжения к лампе, происходит ионизация газа наполнителя, через него начинает протекать электрический ток и он начинает излучать в видимом диапазоне - светиться. . Если трубка заряжена газом Ar c добавлением ртути, то возникает ультрафиолетовое излучение, которое возбуждает свечение люминофора (если лампа сделана из стекла с люминофорным (флуоресцентным) покрытием). Напряжение, нужное для горения – приблизительно 1 кВ (1000 Вольт) на 1 метр «неоновой» трубки. Для точного расчета выбора напряжения питания существуют специальные методы расчета и справочные таблицы. Стеклянные трубки, используемые в производстве неоновых ламп, имеют разные диаметры - в основном от 8мм до 18мм. Длина используемых трубок 1м, 1.2м, 1.5м, 2.0м, 2.5м, 3.0м. Самая ходовая длина 1.2 м и 1.5 м. С целью расширения цветовой гаммы излучения и повышения световой отдачи внутренняя поверхность трубок покрывается люминофором. Яркость газосветной трубки обычно составляет около 1 кнт. .

21. Катодные лучи и их свойства. Катодные лучи — поток электронов, излучаемый катодом. Катодные лучи используются в телевизионных трубках, компьютерных мониторах, осциллографах, электронных микроскопах и радиолампах. В этих приборах катодные лучи распространяются в вакууме. Катодные лучи вызывают свечение некоторых веществ, нанесённых на внутреннюю поверхность трубки. Катодные лучи обладают кинетической энергией и способны передавать механическое движение вертушке с лопастями. Катодные лучи отклоняются магнитным и электрическим полем. Катодные лучи отрицательно заряжены, и поэтому движутся по направлению к положительно заряженному электроду трубки, пролетая через отверстие в нём.

 

22. Электрический ток в вакууме. Двухэлектродная электронная лампа. Электрический ток в вакууме возможен в электронных лампах. Электронная лампа - это устройство, в котором применяется явление термоэлектронной эмиссии. Вакуумный диод - это двухэлектродная ( А- анод и К - катод ) электронная лампа. Внутри стеклянного баллона создается очень низкое давление Н - нить накала, помещенная внутрь катода для его нагревания. Поверхность нагретого катода испускает электроны. Если анод соединен с + источника тока, а катод с -, то в цепи протекает постоянный термоэлектронный ток. Вакуумный диод обладает односторонней проводимостью.  Т.е. ток в аноде возможен, если потенциал анода выше потенциала катода. В этом случае электроны из электронного облака притягиваются к аноду, создавая эл.ток в вакууме.

23.Трёхэлектродная электронная лампа (Триод). Электронная лампа, имеющая три электрода, называется три­одом. Триод отличается от диода тем, что между его катодом и анодом находится третий электрод, выполненный в виде проволочной спи­рали, который называется сеткой. Анод, сетка и катод присоединя­ются, как и у диода, к штырькам цоколя лампы. По своему расположению сетка мешает или помогает электро­нам, вылетевшим с катода, достигнуть анода. Между сеткой и като­дом включается напряжение, которое называется сеточным напря­жением Uc.

24. Сравнение свойств проводников, диэлектриков, полупроводников. До сравнительно недавнего времени все вещества по их электрчиеским свойствам подразделяли на проводники и диэлектрики. Такое подразделение целесобразно, поскольку эти вещества резко отличаются дроуг от друга по электропроводности. для проводников значение удельного сопротивления находится в пределах от 10(степень -5) до 10(-8)Ом*м, а для диэлектриков оно изменяется в пределах от 10(10) до 10(16)Ом*м. Эти числа показывают, насколько велик4 интервал значений удельного сопротивления проводников и диэлектриков. Дальнейшее изучение электропроводности веществ привело к открытию таких материалов, у которых электропроводность оказалась промежуточной между проводниками и диэлектриками. Эти вещества назвали полупроводниками.

25. Собственная проводимость полупроводников. Если полупроводник помещается в электрическое поле, то в упорядоченное движение вовлекаются не только свободные электроны, но и дырки, которые ведут себя как положительно заряженные частицы. Поэтому ток I в полупроводнике складывается из электронного In и дырочного Ip токов:   I = In+ Ip. Электронно-дырочный механизм проводимости проявляется только у чистых (т.е. без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников. Механизм электрического тока в полупроводниках нельзя объяснить в рамках модели газа свободных электронов. Проводимость полупроводников при наличии примесей называется примесной проводимостью. Различают два типа примесной проводимости – электронную и дырочную..

 

26. Примесная проводимость полупроводников.  Проводимость полупроводников при наличии примесей называется примесной проводимостью. Различают два типа примесной проводимости – электронную и дырочную.Электронная проводимость возникает, когда в кристалл (если рассматрвиать на примере германия) германия с четырехвалентными атомами введены пятивалентные атомы (например, атомы мышьяка, As). Примесная проводимость, как правило, намного превышает собственную, и поэтому электрические свойства полупроводников определяются типом и количеством введенных в неголегирующих примесей.

 

27. Электронно-дырочный переход. Полупроводниковый диод. В любом полупроводниковом приборе имеется один или несколько электронно-дырочных переходов. Электронно-дырочный переход (или np-переход) – это область контакта двух полупроводников с разными типами проводимости. Переходная область полупроводника, в которой имеет место пространственное изменение типа проводимости от электронной n к дырочной p .Электронно-дырочный переход является основой широкого класса твердотельных приборов для нелинейного преобразования электрических сигналов в различных устройствах электронной техники.

 

28. Полупроводниковый триод (транзистор). Полупроводниковые приборы не с одним, а с двумя np-переходами называются транзисторами. Название происходит от сочетания английских слов: transfer – переносить и resistor – сопротивление. Обычно для создания транзисторов используют германий и кремний. Транзисторы бывают двух типов: pnp-транзисторы и npn-транзисторы. Например, германиевый транзистор pnp-типа представляет собой небольшую пластинку из германия с донорной примесью, т. е. из полупроводника n-типа. В этой пластинке создаются две области с акцепторной примесью, т. е. области с дырочной проводимостью (рис. 1.14.3). В транзисторе npn-типа основная германиевая пластинка обладает проводимостью p-типа, а созданные на ней две области – проводимостью n-типа (рис. 1.14.4).

 

29. Взаимодействие проводников с током. Магнитное поле как особый вид материи. Если близко один к другому расположены проводники с токами одного направления, то магнитные линии этих проводников, охватывающие оба проводника, обладая свойством продольного натяжения и стремясь сократиться, будут заставлять проводники притягиваться. Магнитные линии двух проводников с токами разных направлений в пространстве между проводниками направлены в одну сторону. Магнитные линии, имеющие одинаковое направление, обладают свойством бокового распора. Поэтому проводники с токами противоположного направления отталкиваются один от другого. Явление взаимодействия электрических токов Ампер назвал электродинамическим взаимодействием. На основании своих опытов Ампер пришел к выводу, что взаимодействие тока с магнитом и магнитов между собой можно объяснить, если предположить, что внутри магнита существуют незатухающие молекулярные круговые токи (рис. 179). Тогда все магнитные явления объясняются взаимодействием движущихся электрических зарядов, никаких особых магнитных зарядов в природе нет . Магнитное взаимодействие движущихся электрических зарядов согласно представлениям теории близкодействия объясняется следующим образом. Всякий движущийся электрический заряд создает в окружающем пространстве магнитное поле. Магнитное поле непрерывно в пространстве и действует на другие движущиеся электрические заряды.

 

30. Линии индукции магнитного поля. Однородное магнитное поле. Линия, в любой точке которой вектор магнитной индукции направлен по касательной, называется линией магнитной индукции. Если во всех точках некоторой части пространства вектор индукции магнитного поля имеет одинаковое значение по модулю и одинаковое направление, то магнитное поле в этой части пространства называется однородным. Линии магнитной индукции магнитного поля прямого проводника с током представляют собой окружности, лежащие в плоскостях, перпендикулярных проводнику. Центры окружностей находятся на оси проводника. Линии магнитной индукции представляют собой окружности с центрами на оси тока, расположенные в плоскостях, перпендикулярных направлению тока. Их направление определяют по правилу  буравчика: при поступательном движении буравчика в направлении тока его вращение указывает направление линий магнитного индукции  этого тока.

31. Магнитное поле проводника с током. Магнитное поле прямолинейного тока наблюдают, продев сквозь расположенный горизонтально лист картона вертикальный прямолинейный провод, представляющий собой часть электрической цепи. Опилки-стрелочки при замыкании тока в цепи и после легкого постукивания по листу образуют цепочки в виде окружностей с общим центром на оси тока. Поэтому магнитное поле электрического тока графически изображают в виде линий магнитной индукции, аналогичных линиям напряженности электростатического поля. Линии магнитной индукции представляют собой окружности с центрами на оси тока, расположенные в плоскостях, перпендикулярных направлению тока. Их направление определяют по правилу  буравчика: при поступательном движении буравчика в направлении тока его вращение указывает направление линий магнитного индукции  этого тока. Различие между линиями магнитной индукции и линиями напряженности электростатического поля: первые замкнуты и окружают электрический ток; вторые – разомкнуты, начинаются на поверхности положительно заряженных тел и оканчиваются на поверхности отрицательно заряженных. Направление линий магнитной индукции вдоль оси витка укажет магнитная стрелка, помещенная в его центре. Две противоположные стороны обтекаемой током поверхности можно сопоставить с двумя полюсами магнитной стрелки: сторону, из которой линии магнитной индукции выходят – с северным полюсом магнитной стрелки, а в которую они входят – с южным. Направление магнитного поля витка с током можно определить также по правилу буравчика: если поместить острие буравчика в центре витка и вращать буравчик в направлении тока, то его поступательное движение укажет направление линий магнитной индукции. Таким образом, существует взаимная связь направлений тока в замкнутом проводнике и его магнитного поля, их «сцепленность». 32.Сила взаимодействия параллельных проводников с током. В ходе эксперимента мы наблюдали силу, которую нельзя обЪяснить в рамках электростатики. Когда в двух параллельных проводниках ток идет только в одном направлении, между ними существует сила притяжения. Когда токи идут в противоположных направлениях, провода отталкиваются друг от друга. Фактическое значение этой силы действующей между параллельными токами, и ее зависимость от расстояния между проводами могут быть измерены с помощью простого устройства в виде весов.3 В виду отсутствия таковых, примим на веру, результаты опытов которые показывают, что эта сила обратно пропорциональна расстоянию между осями проводов: F 1/r. Поскольку эта сила должна быть обусловлена каким – то влиянием, распространяющимся от одного провода к другому, то такая цилиндрическая геометрия создаст силу, зависящую обратно пропорционально первой степени расстояния. Вспомним, что электростатическое поле распространяется от заряженного провода тоже с зависимостью от расстояния вида 1/r. Исходя из опытов видно также что сила взаимодействия между проводами зависит от произведения протекающих по ним токов. Из симметрии можно сделать вывод что если эта сила пропорциональна I1 , она должна быть пропорциональна и I2. То, что эта сила прямо пропорциональна каждому из токов, представляет собой просто экспериментальный факт4. 33.Определение Ампера Сила, с которой магнитное поле действует на проводник с током, называется силой Ампера. Экспериментальное изучение магнитного взаимодействия показывает, что модуль силы Ампера  пропорционален длине L проводника с током и зависит от ориентации проводника в магнитном поле. Сила Ампера может быть выражена через силы, действующие на отдельные носители заряда.  Пусть концентрация носителей свободного заряда в проводнике есть n, а q – заряд носителя. Тогда произведение nqυS, где υ – модуль скорости упорядоченного движения носителей по проводнику, а S – площадь поперечного сечения проводника, равно току, текущему по проводнику: I = qnυS  Выражение для силы Ампера можно записать в виде:F = BqnʋSLsinα Так как полное число N носителей свободного заряда в проводнике длиной Δl и сечением S равно nSΔl, то сила, действующая на одну заряженную частицу, равна Fл = qʋBsinα     34.Действие магнитного поля на прямолинейный проводник с током. Индукция магнитного поля. Если кисть левой руки расположить так, что 4 вытянутых пальца указывают направление тока в проводнике, а вектор магнитной индукции входит в ладонь, то отогнутый (в плоскости ладони) на 900 большой палец покажет направление силы, действующей на отрезок проводника. Единица индукции в этом случае определяется как индукция такого магнитного поля, в котором на 1 м проводника при силе тока 1 А действует максимальная сила Ампера 1 Н. Эта единица называется Тесла (Тл) в честь выдающегося югославского электротехника Николы Тесла (1856—1943). Формулу можно использовать для определения модуля максимального значения силы Ампера, действующей на прямолинейный проводник с током в магнитном поле с индукцией  : Fmax = BIL где L — длина проводника; I — сила тока. Опыт показывает, что при расположении проводника с током под углом  к вектору  магнитной индукции для нахождения модуля силы Ампера следует применять выражение F = BILsinα          35. Работа по перемещению проводника с током в магнитном поле. Магнитный поток. Работа, совершаемая проводником с током при перемещении, численно равна произведению тока на магнитный поток, пересечённый этим проводником. Рассмотрим контур с током, образованный неподвижными проводами и скользящей по ним подвижной перемычкой длиной l (рис. 2.17). Этот контур находится во внешнем однородном магнитном поле  , перпендикулярном к плоскости контура. направлении тока I, вектор   сонаправлен с  . На элемент тока I (подвижный провод) длиной l действует сила Ампера, направленная вправо: F = IBl  Пусть проводник l переместится параллельно самому себе на расстояние  dx. При этом совершится работа: dA = Fdx = IBl dx = IB dS = I dФФормула остаётся справедливой, если проводник любой формы движется под любым углом к линиям вектора магнитной индукции. Магнитный поток. Магнитным потоком через поверхность называется величина Ф, определяемая соотношением: Φ = B · S · cos α                     Единица измерения магнитного потока в систем СИ - 1 Вебер (1 Вб). 1 Вб = 1 Тл · 1 м2 Магнитный поток через контур максимален ,если плоскость контура перпендикулярна магнитному полю. Значит угол a равен 00 .Тогда магнитный поток рассчитывается по формуле:  Φmax = B · S   Магнитный поток через контур равен нулю ,если контур располагается параллельно магнитному полю. Значит угол a равен 900 . 

36 . Магнитное поле, создаваемое проводниками с током различной формы. Магнитное поле прямолинейного тока наблюдают, продев сквозь расположенный горизонтально лист картона вертикальный прямолинейный провод, представляющий собой часть электрической цепи. Опилки-стрелочки при замыкании тока в цепи и после легкого постукивания по листу образуют цепочки в виде окружностей с общим центром на оси тока. Поэтому магнитное поле электрического тока графически изображают в виде линий магнитной индукции, аналогичных линиям напряженности электростатического поля. Линии магнитной индукции представляют собой окружности с центрами на оси тока, расположенные в плоскостях, перпендикулярных направлению тока. Их направление определяют по правилу  буравчика: при поступательном движении буравчика в направлении тока его вращение указывает направление линий магнитного индукции  этого тока. Различие между линиями магнитной индукции и линиями напряженности электростатического поля: первые замкнуты и окружают электрический ток; вторые – разомкнуты, начинаются на поверхности положительно заряженных тел и оканчиваются на поверхности отрицательно заряженных. Магнитное поле витка с током, или контура тока, показано рисунке(кружок с точкой означает, что в этом сечении ток направлен перпендикулярно плоскости рисунка к нам, а кружок с крестом - что ток направлен от нас). Направление линий магнитной индукции вдоль оси витка укажет магнитная стрелка, помещенная в его центре. Две противоположные стороны обтекаемой током поверхности можно сопоставить с двумя полюсами магнитной стрелки: сторону, из которой линии магнитной индукции выходят – с северным полюсом магнитной стрелки, а в которую они входят – с южным. Направление магнитного поля витка с током можно определить также по правилу буравчика: если поместить острие буравчика в центре витка и вращать буравчик в направлении тока, то его поступательное движение укажет направление линий магнитной индукции. Таким образом, существует взаимная связь направлений тока в замкнутом проводнике и его магнитного поля, их «сцепленность».  37. Напряженность магнитного поля. Напряженность магнитного поля необходима для определения магнитной индукции поля, создаваемого токами различной конфигурации в различных средах. Напряженность магнитного поля характеризует магнитное поле в вакууме. Напряженность магнитного поля (формула) векторная физическая величина, равная:  где  µ - магнитная проницаемость – физическая величина, показывающая, во сколько раз индукция магнитного поля в однородной среде отличается от магнитной индукции внешнего поля в вакууме. Напряженность магнитного поля в СИ - ампер на метр (А/м). Векторы индукции (В) и напряженности магнитного поля (Н) совпадают по направлению. Напряженность магнитного поля зависит только от силы тока, протекающего по проводнику, и его геометрии.  В диамагнетике внешнее магнитное поле незначительно ослабляется ( ), в парамагнетике незначительно усиливается (  ), в ферромагнетике значительно усиливается (µ>>1). В вакууме магнитная индукция B0 пропорциональна напряженности магнитного поля Н:  В0 =µ0Н  где µ0 = 4π∙10-7 Гн/м -  магнитная постоянная. 38.   Явление электромагнитной индукции. Э.Д.С. индукции, наводимая магнитным полем в движущихся  проводниках. Явление электромагнитной индукции: При всяком изменении магнитного потока, пронизывающего контур замкнутого проводника, в этом проводнике возникает индукционный (или наведенный) электрический ток, существующий в течение всего процесса изменения магнитного потока. Экспериментальное исследование зависимости ЭДС индукции от изменения магнитного потока привело к установлению закона электромагнитной индукции: ЭДС индукции в замкнутом контуре пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром.    В СИ единица магнитного потока выбрана такой, чтобы коэффициент пропорциональности между ЭДС индукции и изменением магнитного потока был равен единице. При этом закон электромагнитной индукции формулируется следующим образом: ЭДС индукции в замкнутом контуре равна модулю скорости изменения магнитного потока через поверхность, ограниченную контуром: Ɛi = - ΔФ/Δt     ЭДС индукции возникает в любом отрезке проводника, движущемся в магнитном поле и пересекающем линии магнитной индукции. ЭДС индукции в таком «микрогенераторе» можно рассчитать с помощью схемы, представленной на Рис.1. По параллельным металлическим «рельсам», замкнутым с одной стороны проводящей перемычкой AB, в однородном поле с магнитной индукцией B с постоянной скоростью v скользит проводящий «мостик» CD длиной l . За время Δt магнитный поток, пронизывающий контур ABCD, возрастает на величину ΔФ = Bvl·Δt, откуда ΔФ/Δt = Bvl Согласно основному закону электромагнитной индукции ЭДС, индуктируемая в контуре, определяется соотношением  Ɛi = -ΔФ/Δt = -Bvl Если скорость движения проводника постоянна, то и ЭДС индукции остается постоянной. В момент остановки заряды в проводнике под действием кулоновских сил «схлопываются» и микрогенератор практически мгновенно разряжается. 39.   Опыты Фарадея. Правило Ленца. Английский ученый Майкл Фарадей проводил свои опыты в течение 10 лет, прежде чем утвердительно ответил на этот вопрос и пришел к выводу о существовании явления э/м индукции. Его опыт обобщил и перевел на язык формул Дж.Максвелл, т.к. в книге Фарадея не было ни одной формулы! 1831 г. - Фарадей обнаружил, что в замкнутом проводящем контуре при изменении магнитного поля возникает индукционный ток. ОПЫТЫ ФАРАДЕЯ: по обнаружению явления электромагнитной индукции: -движение магнита относительно катушки (или наоборот); -движение катушек относительно друг друга; -изменение силы тока в цепи первой катушки ( с помощью реостата или замыканием и размыканием выключателя);  - вращением контура в магнитном поле; - вращением магнита внутри контура. Правило Ленца.Опыт показывает, что направление индукционного тока в контуре зависит от того, возрастает или убывает магнитный поток, пронизывающий контур, а также от направления вектора индукции магнитного поля относительно контура. Общее правило, позволяющее определить направление индукционного тока в контуре, было установлено в 1833 г. Э. X. Ленцем. Общая формулировка правила Ленца: возникающий в замкнутом контуре индукционный ток имеет такое направление, что созданный им магнитный поток через площадь, ограниченную контуром, стремится компенсировать то изменение магнитного потока, которым вызывается данный ток. Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии. Ценность этого теоретического вклада Ленца состоит еще и в том, что он впервые установил связь между электромагнитными и электродинамическими явлениями. В этой работе Ленца говорилось: «работа перемещения первого проводника превращается в электрическую энергию во втором проводнике». Эти слова не что иное, как формулировка в применении к электричеству принципа сохранения энергии и превращения одного ее вида в другой. 40.   Величина ЭДС индукции. Потокосцепление, индуктивность. Индуктивностью называется идеализированный элемент электрической цепи, в котором происходит запасание энергии магнитного поля. Запасания энергии электрического поля или преобразования электрической энергии в другие виды энергии в ней не происходит. Наиболее близким к идеализированному элементу - индуктивности - является реальный элемент электрической цепи - индуктивная катушка. В отличие от индуктивности в индуктивной катушке имеют место также запасание энергии электрического поля и преобразование электрической энергии в другие виды энергии, в частности в тепловую. Количественно способность реального и идеализированного элементов электрической цепи запасать энергию магнитного поля характеризуется параметром, называемым индуктивностью. Таким образом термин «индуктивность» применяется как название идеализированного элемента электрической цепи, как название параметра, количественно характеризующего свойства этого элемента, и как название основного параметра индуктивной катушки.  Величина магнитной индукции B, создаваемой током в любом замкнутом контуре, пропорциональна силе тока. Так как магнитный поток Ф пропорционален В, то можно утверждать, что Ф = LI      где L – коэффициент пропорциональности между током в проводящем контуре и созданным им магнитным потоком, пронизывающим этот контур. Величину L называют индуктивностью контура или его коэффициентом самоиндукции. индуктивность – это физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с. Индуктивность подобно электроемкости, зависит от геометрических факторов: размеров проводника и его формы, но не зависит непосредственно от силы тока в проводнике. Кроме геометрии проводника, индуктивность зависит от магнитных свойств среды, в которой находится проводник. Единицу индуктивности в СИ называют генри (Гн). Индуктивность проводника равна 1 Гн, если в нем при изменении силы тока на 1 А за 1 с возникает ЭДС самоиндукции 1 В: 1 Гн = 1 В / (1 А/с) = 1 В·с/А = 1 Ом·с

41.   Явление самоиндукции. Если по катушке идет переменный ток, то магнитный поток, пронизы-вающий катушку, меняется. Поэтому возникает ЭДС индукции в том же самом проводнике, по которому идет переменный ток. Это явление называют самоиндукцией. При самоиндукции проводящий контур играет двоякую роль: по нему протекает ток, вызывающий индукцию, и в нем же появляется ЭДС индукции. Изменяющееся магнитное поле индуцирует ЭДС в том самом проводнике, по которому течет ток, создающий это поле. В момент нарастания тока напряженность вихревого электрического поля в соответствии с правилом Ленца направлена против тока. Следовательно, в этот момент вихревое поле препятствует нарастанию тока. Наоборот, в момент уменьшения тока вихревое поле поддерживает его. Это приводит к тому, что при замыкании цепи, содержащей источник постоянной ЭДС, определенное значение силы тока устанавливается не сразу, а постепенно с течением времени (рис. 9). С другой стороны, при отключении источника ток в замкнутых контурах прекращается не мгновенно. Возникающая при этом ЭДС самоиндукции может превышать ЭДС источника, так как изменение тока и его магнитного поля при отключении источника происходит очень быстро.

 

42.   Получение переменного тока и его параметры Переменный ток, в отличие от тока постоянного, непрерывно изменяется как по величине, так и по направлению, причем изменения эти происходят периодически, т. е. точно повторяются через равные промежутки времени. Максимальное значение переменного тока (ЭДС или напряжения) называется его амплитудой или амплитудным значением тока. Число колебаний, совершаемых током в 1 секунду, называется частотой переменного тока и обозначается латинской буквой ν.  Чтобы определить частоту переменного тока, т. е. узнать, сколько периодов своего изменения ток совершил в течение 1 секунды, необходимо 1 секунду разделить на время одного периода ν = 1/T. Зная частоту переменного тока, можно определить период: T = 1/ν. Частота переменного тока измеряется единицей, называемой Герцем. Переменный ток характеризуется периодом, частотой и амплитудой, зная которые мы можем судить, какой это переменный ток, и построить график тока. Промежуток времени, на протяжении которого совершается полный цикл изменения тока, называется периодом. Период обозначается буквой Т и измеряется в секундах

 

43.   Генераторы постоянного и переменного токов. Чтобы вызвать в цепи такой ток, используются источники переменного тока, создающие переменную ЭДС, периодически изменяющуюся по величине и направлению. Такие источники называются генераторами переменного тока. На рис. 1 показана схема устройства (модель) простейшего генератора переменного тока. Прямоугольная рамка, изготовленная из медной проволоки, укреплена на оси и при помощи ременной передачи вращается в поле магнита. Концы рамки припаяны к медным контактным кольцам, которые, вращаясь вместе с рамкой, скользят по контактным пластинам (щеткам). Таким образом, при равномерном вращении рамки в ней будет индуктироваться ЭДС, периодически изменяющаяся как по величине, так и по направлению. Магнитный поток, пронизывающий контур, определяется формулой Ф = ВS cosα  При равномерном вращении контура угол поворота α изменяется со временем по закону α = ωt, а магнитный поток, пронизывающий контур – по законуФ = ВS cosωt

 

44.   Трансформаторы. Трансформатор  был  изобретен   английским физиком Майклом Фарадеем в 1831 г. Трансформатор является одним из главных компонентов современных электроэнергетических систем. Трансформа́тор (от лат. transformo — преобразовывать) — статическое (не имеющее подвижных частей) электромагнитное устройство, предназначенное для преобразования посредством электромагнитной индукции системы переменного тока одного напряжения в систему переменного тока обычно другого напряжения при неизменной частоте и без существенных потерь мощности. Трансформатор может состоять из одной (автотрансформатор) или нескольких изолированных проволочных, либо ленточных обмоток, охватываемых общим магнитным потоком, намотанных, как правило, на магнитопровод (сердечник) из ферромагнитного магнито-мягкого материала.  Принцип действия трансформатора основан на явлении электромагнитной индукции. На первичную обмотку трансформатора, подаётся напряжение от внешнего источника переменного тока. Протекающий по первичной обмотке переменный ток создаёт переменный магнитный поток в сердечнике трансформатора. В результате электромагнитной индукции, переменный магнитный поток в сердечнике трансформатора создаёт в обмотках ЭДС индукции, в том числе и в первичной обмотке.

45.   Индукционная катушка. Индукционная катушка Румкорфа — устройство для получения импульсов высокого напряжения до 10 кВ. Состоит из цилиндрической части, с центральным железным стержнем внутри, на которую намотана первичная обмотка из толстой проволоки. Поверх первичной обмотки наматывается несколько тысяч витков вторичной обмотки из очень тонкой проволоки. Первичная обмотка подсоединена к батарее химических элементов и конденсатору. В эту же цепь вводится прерыватель (зуммер) и коммутатор. Назначение прерывателя состоит в быстром попеременном замыкании и размыкании цепи. Результатом этого является то, что при каждом замыкании и размыкании в первичной цепи во вторичной обмотке появляются сильные мгновенные токи: при прерывании — прямого (одинакового направления с током первичной обмотки) и при замыкании обратного. При замыкании первичной обмотки через неё течёт нарастающий ток. Катушка Румкорфа накапливает энергию в сердечнике в виде магнитного поля. Когда магнитное поле достигает определённой величины, якорь притягивается и цепь размыкается. При размыкании цепи в обеих обмотках возникает бросок напряжения (противоЭДС), прямо пропорциональный числу витков обмоток, большой по величине даже в первичной обмотке, а во вторичной ещё больше, высокое напряжение которого пробивает воздушный промежуток между выводами вторичной обмотки (пробивное напряжение воздуха приблизительно равно 3кВ на 1мм). ПротивоЭДС в первичной обмотке через низкое сопротивление батареи химических элементов заряжает конденсатор C. Разница напряжений прямого и обратного может использоваться для получения постоянного тока. Для этого подбирается размер искрового промежутка, который играет роль «выпрямителя». Нагрузка подключается последовательно.Катушку Румкорфа, названную по имени немецкого физика Генриха HYPERLINK "http://ru.wikipedia.org/wiki/%D0%A0%D1%83%D0%BC%D0%BA%D0%BE%D1%80%D1%84,_%D0%93%D0%B5%D0%BD%D1%80%D0%B8%D1%85_%D0%94%D0%B0%D0%BD%D0%B8%D1%8D%D0%BB%D1%8C"Румкорфа, использовали в своих опытах с электромагнитными волнами Генрих Герц, А. С. Попов, ГульельмоHYPERLINK "http://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%80%D0%BA%D0%BE%D0%BD%D0%B8,_%D0%93%D1%83%D0%BB%D1%8C%D0%B5%D0%BB%D1%8C%D0%BC%D0%BE" Маркони и др.

46.   Получение электромагнитных колебаний в замкнутом колебательном  контуре. Электромагнитные колебания — это периодические изменения со временем электрических и магнитных величин (заряда, силы тока, напряжения, напряженности, магнитной индукции и др.) в электрической цепи. Для возбуждения и поддержания электромагнитных колебаний требуются определенные системы, простейшей из которых является колебательный контур — цепь, состоящая из включенных последовательно катушки индуктивностью L, конденсатора емкостью С и резистора сопротивлением R (это может быть сопротивление провода катушки и проводов, соединяющих катушку с конденсатором) (рис. 1). Идеальный контур Томсона — колебательный контур без активного сопротивления (R = 0). Рассмотрим свободные электромагнитные колебания — колебания, происходящие в идеальном колебательном контуре за счет расходования сообщенной этому контуру энергии, которая в дальнейшем не пополняется. Рисунок 2 иллюстрирует характерные стадии колебаний в контуре за один период. Отсчет времени t мы начинаем с момента подключения к контуру заряженного конденсатора. В этот момент (рис. 2, а) напряженность электрического поля в конденсаторе (направленная сверху вниз), а также напряжение U на обкладках конденсатора максимальны, а тока в контуре еще нет, следовательно, отсутствует и магнитное поле. При этом вся энергия W колебательного контура заключена в электрическом поле конденсатора, т.е.

 

47.   Вынужденные колебания, резонанс. Вынужденные колебания в отличие от свободных колебаний совершаются не самостоятельно, а под действием периодической внешней силы. Например, электрические колебания в антенне приемника не являются свободными, так как они происходят под воздействием приходящих радиоволн. Рассмотрим сначала вынужденные колебания маятника, обладающего определенной собственной частотой. Будем качать его рукой с другой частотой. Характер этого колебания зависит от движения руки и может быть, в частности, синусоидальным. К маятнику периодически подводится энергия извне; поэтому его колебания будут незатухающими и могут иметь любую частоту, которая определяется частотой внешней силы. Такое же явление будет и в колебательном контуре, соединенном с генератором переменного тока. При любой частоте генератора через контур проходит переменный ток, т.е. в контуре происходят вынужденные электрические колебания с частотой генератора. Вынужденные колебания имеют совершенно иные свойства по сравнению со свободными колебаниями: 1). Они являются незатухающими (вернее они существуют в течение всего времени действия внешней эдс); 2). Они могут иметь различную форму в зависимости от характера ЭДС; 3). Частота их не зависит от L и С контура, а определяется частотой воздействующей ЭДС; 4). Амплитуда их зависит не только от величины воздействующей ЭДС, но и от соотношения между частотой этой ЭДС и собственной частотой самого контура. Последнее свойство вынужденных колебаний представляет особый интерес и должно быть рассмотрено подробно. Явление резонанса состоит в том, что при совпадении частоты воздействующей ЭДС и собственной частоты контура амплитуда вынужденных колебаний достигает наибольшей величины. На явление резонанса сильно влияет затухание контура. У контура с меньшим затуханием кривая резонанса острее и выше (рис.1 6). Это значит, что контур почти не отзывается на колебания с частотами, отличающимися от его собственной частоты, но зато при резонансе в нем возникают колебания большой амплитуды (острый резонанс). Наоборот, при большом затухании амплитуда колебаний при резонансе получается малой, и контур отзывается на колебания с частотой, значительно отличающейся от резонансной (тупой резонанс). Чем меньше затухание, тем острее резонанс и тем больше чувствительность контура к колебаниям резонансной частоты. Для резонанса характерно получение мощных колебаний при небольшой затрате энергии внешнего источника, нужной только для компенсации потерь энергии при колебаниях.

 

48.   Токи высокой частоты и их применение. Токами высокой частоты и высокого напряжения называются такие токи, в которых частота, т. е. число колебаний, доходит до одного миллиона и больше в одну секунду, а напряжение (или вольтаж) доведено от 1 000 до сотен тысяч вольт. Они применяются в лечебных целях. К ним относятся так называемые дарсонвалевекий и диатермический токи. Токи высокой частоты представляют собой такие токи, частота которых, то есть число колебаний, достигает в одну секунду одного миллиона. Данный вид токов нашел свое применение в машиностроении, где он необходим для сварки и термообработки поверхностей деталей, и в металлургии, где он используется для плавки различных металлов.

49.   Электромагнитное  поле как особый вид материи. Электромагнитные волны, скорость и распространения. В 1864г. Дж. Максвелл создаёт теорию электромагнитного поля, согласно которой электрическое и магнитное поля существуют как взаимосвязанные составляющие единого целого - электромагнитного поля. Электромагнитное поле - это особая форма материи, посредством которой осуществляется взаимодействие между заряженными частицами. Представляет собой взаимосвязанные переменные электрическое поле и магнитное поле. Взаимная связь электрического Е и магнитного Н полей заключается в том, что всякое изменение одного из них приводит к появлению другого: переменное электрическое поле, порождаемое ускоренно движущимися зарядами (источником), возбуждает в смежных областях пространства переменное магнитное поле, которое, в свою очередь, возбуждает в прилегающих к нему областях пространства переменное электрическое поле, и т. д. Таким образом, электромагнитное поле распространяется от точки к точке пространства в виде электромагнитных волн, бегущих от источника. Благодаря конечности скорости распространения электромагнитное поле может существовать автономно от породившего его источника и не исчезает с устранением источника (например, радиоволны не исчезают с прекращением тока в излучившей их антенне). Электромагнитные волны представляют собой электромагнитные колебания, распространяющиеся в пространстве с конечной скоростью, зависящей от свойств среды (рис. 1). Распространяясь в средах, электромагнитные волны, как и всякие другие волны, могут испытывать преломление и отражение на границе раздела сред, дисперсию, поглощение, интерференцию; при распространении в неоднородных средах наблюдаются дифракция волн, рассеяние волн и другие явления.

 

50.   Антенна, изобретение радио А.С. Поповым. Радиотелеграфная связь. Прошло более 100 лет со дня изобретения радиопередачи полезной (заданной) информации русским ученым Александром Степановичем Поповым, который 25 апреля по старому стилю (7 мая - по новому стилю) 1895 года впервые в мире сделал научный доклад для научно-технической общественности об изобретенном им методе использования излученных электромагнитных волн для беспроводной передачи электрических сигналов, содержащих полезную информацию для получателя, и продемонстрировал такую передачу в действии, получая в приемнике эту информацию. В марте следующего года он продемонстрировал уже прибор для передачи сигналов, передав на расстояние 250 м радиограмму их двух слов "Генрих Герц". Первые сообщения об этом докладе появились в газете "Кронштадский вестник" (от 30 июня 1895 года). Описание аппаратуры А.С. Попова и полученных им результатов было опубликовано А.С. Поповым в ряде журналов, в том числе в журналах Русского физико-химического общества (РФХО) - том 27 от 24 ноября 1895 года и том 28 от 28 февраля 1896 года. Эти журналы распространялись не только в России, но и за рубежом и были весьма популярны среди иностранных ученых. Предложенный А.С. Поповым метод беспроводной передачи полезной информации путем модуляции (манипуляции) излучаемых электромагнитных волн получил в дальнейшем название радиопередачи (Radio - испускать лучи, лат.).

51.   Радиотелефонная связь. Амплитудная модуляция. Радиолокация. Остановимся на принципах современной радиотелефонной связи. Радиопередачи стали возможны после создания генератора незатухающих колебаний. При радиотелефонной связи колебания давления воздуха в звуковой волне с помощью микрофона превращаются в электрические колебания той же формы. Трудность передачи звукового сигнала состоит в том, что для радиосвязи необходимы колебания высокой частоты, а колебания звукового диапазона — низкочастотные колебания, для излучения которых невозможно построить эффективные антенны. Поэтому колебания звуковой частоты приходится тем или иным способом накладывать на колебания высокой частоты, которые уже переносят их на большие расстояния. Радиопередающее устройство содержит следующие основные элементы (рис. 1): Г — задающий генератор колебаний высокой частоты, преобразующий энергию источника постоянного напряжения в гармонические колебания высокой частоты. Частоту этих колебаний называют несущей. Она должна быть строго постоянной; МК — преобразователь сообщений в электрический сигнал, используемый для модуляции колебаний несущей частоты. Вид преобразователя зависит от физической природы передаваемого сигнала: при звуковом сигнале преобразователем является микрофон, при передаче изображений — передающая телевизионная трубка: Μ — модулятор, в котором происходит модуляция высокочастотного сигнала в соответствии с частотой звукового сигнала, несущего информацию, подлежащую передаче; УВЧ — обычно имеется один или два каскада усилителя мощности модулированного сигнала; Α1 — излучающая антенна, предназначенная для излучения электромагнитных волн в окружающее пространство.

 

52.   Световые явления на границе раздела 2-х сред. Законы отражения. Отраже́ние — физический процесс взаимодействия волн или частиц с поверхностью, изменение направления волнового фронта на границе двух сред с разными свойствами, в котором волновой фронт возвращается в среду, из которой он пришёл. Одновременно с отражением волн на границе раздела сред, как правило, происходит преломление волн (за исключением случаев полного внутреннего отражения). Закон отражения света — устанавливает изменение направления хода светового луча в результате встречи с отражающей (зеркальной) поверхностью: падающий и отражённый лучи лежат в одной плоскости с нормалью к отражающей поверхности в точке падения, и эта нормаль делит угол между лучами на две равные части. Широко распространённая, но менее точная формулировка «угол падения равен углу отражения» не указывает точное направление отражения луча. Тем не менее, выглядит это следующим образом: Закон отражения света: падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости (плоскость падения). Угол отражения γ равен углу падения α.

 

53.   Зеркальное диффузное отражение. Плоское зеркало. В зависимости от свойств границы раздела между двумя средами отражение может иметь различный характер. Если граница имеет вид поверхности, размеры неровностей которой меньше длины световой волны, то она называется зеркальной. Лучи света, падающие на такую поверхность узким параллельным пучком, идут после отражения также по близким направлениям. Такое направленное отражение называют зеркальным.  Если же размеры неровностей больше длины волны света, то узкий пучок рассеивается на границе. После отражения лучи света идут по всевозможным направлениям. Такое отражение называют рассеянным или диффузным. Именно благодаря диффузному отражению света мы можем видеть предметы, которые сами не излучают свет. В малой степени рассеяние света имеет место при его отражении даже от самой гладкой поверхности, например, от обычного зеркала. Иначе мы не могли бы увидеть поверхность зеркала.

 

54.   Законы преломления. Закон преломления света: падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления β есть величина, постоянная для двух данных сред: Закон преломления был экспериментально установлен голландским ученым В. HYPERLINK "http://www.physics.ru/courses/op25part2/content/scientist/snellius.html"Снеллиусом в 1621 г. Законы отражения и преломления находят объяснение в волновой физике. Согласно волновым представлениям, преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую. Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ1 к скорости их распространения во второй среде υ2n = v2/v1

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]