Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_po_fizike2.docx
Скачиваний:
33
Добавлен:
26.09.2019
Размер:
289.21 Кб
Скачать

1.P-n переход. Односторонняя проводимость р-n перехода. Диод. Транзистор. Исключительно важные свойства полупроводников, пред­определившие их чрезвычайно широкое применение, про­являются в пограничной области, вернее в очень узком слое вещества между двумя частями полупроводника, обладаю­щими проводимостями различных видов. Этот слой полу­чил название электронно-дырочного перехода или сокра­щенно р-n-перехода. Определяющее свойство р-n-пере­хода – его односторонняя проводимость. Интересная особенность р-n-перехода за­ключается в том, что в диапазоне обратных напряжений, не превышающих напряжения пробоя, переход проявляет емкостные свойства, то есть ведет себя как конденсатор, причем емкость перехода обратно пропорциональна при­ложенному напряжению. Это свойство широко исполь­зуется там, где возникает необходимость применения кон­денсаторов переменной емкости, перестраиваемых пе вруч­ную, а автоматически — в зависимости от обратного на­пряжения, приложенного к р-n-переходу. Дио́д  — двухэлектродный электронный прибор, обладает различной проводимостью в зависимости от направления электрического тока. Электрод диода, подключённый к положительному полюсу источника тока, когда диод открыт (то есть имеет маленькое сопротивление), называют анодом, подключённый к отрицательному полюсу — катодом. Транзи́стор , полупроводниковый триод — радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, позволяющий входным сигналам управлять током в электрической цепи. Обычно используется для усиления, генерирования и преобразования электрических сигналов. На принципиальных схемах обозначается «VT» или «Q». В русскоязычной литературе и документации до 1970-х гг. применялись обозначения «Т», «ПП» (полупроводниковый прибор) или «ПТ» (полупроводниковый триод).

Управление током в выходной цепи осуществляется за счёт изменения входного напряжения или тока. Небольшое изменение входных величин может приводить к существенно большему изменению выходного напряжения и тока. Это усилительное свойство транзисторов используется в аналоговой технике (аналоговые ТВ, радио, связь и т. п.).

2.Взаимодействие токов. Закон Ампера Сила Ампера — закон взаимодействия постоянных токов. Установлен Андре Мари Ампером в 1820. Из закона Ампера следует, что параллельные проводники с постоянными токами, текущими в одном направлении, притягиваются, а в противоположном — отталкиваются. Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила  , с которой магнитное поле действует на элемент объёма dV проводника с током плотности  , находящегося в магнитном поле с индукцией  : . Если ток течёт по тонкому проводнику, то  , где  — «элемент длины» проводника — вектор, по модулю равный dl и совпадающий по направлению с током. Тогда предыдущее равенство можно переписать следующим образом: Сила  , с которой магнитное поле действует на элемент  проводника с током, находящегося в магнитном поле, прямо пропорциональна силе тока I в проводнике и векторному произведению элемента длины  проводника на магнитную индукцию  :

.

4.Генерирование переменного электрического тока.

Переме́нный ток, AC (англ. alternating current — переменный ток) — электрический ток, который периодически изменяется по модулю и направлению.

Под переменным током также подразумевают ток в обычных одно- и трёхфазных сетях. В этом случае мгновенные значения тока и напряжения изменяются по гармоническому закону.

В устройствах-потребителях постоянного тока переменный ток часто преобразуется выпрямителями для получения постоянного тока.

Переменный ток получают путем вращения рамки в магнитном поле. Принцип действия — явление электромагнитной индукции (появление индукционного тока в замкнутом контуре при изменении магнитного потока). В генераторах переменного тока вращается якорь из магнита (электромагнита) с несколькими полюсами (2, 4, 6 и т. д.), а с обмоток статора снимается переменное напряжение.

3.Внешний фотоэффект. Опыты Столетова Внешним фотоэлектрическим эффектом (фотоэффектом) называется испускание электронов веществом под действием электромагнитного излучения. Внешний фотоэффект наблюдается в твердых телах (металлах, полупроводниках, диэлектриках), а также в газах на отдельных атомах и молекулах (фотоионизация). Фотоэффект обнаружен (1887 г.) Г. Герцем, наблюдавшим усиление процесса разряда при облучении искрового промежутка ультрафиолетовым излучением. Первые фундаментальные исследования фотоэффекта выполнены русским ученым А. Г. Столетовым. В 1888 году Александр Григорьевич Столетов начинает исследование фотоэффекта, открытого за год до этого Герцем. Эти исследования принесли Столетову мировую известность. Они продолжались два года: с февраля 1888 по июль 1890 года и можно только удивляться, как много было сделано за этот срок человеком, занятым в основном преподавательской деятельностью. Основная часть установки — прибор, который Столетов назвал сетчатым конденсатором. Он состоит из металлической сетки — анода и плоского металлического диска — катода (сетчатый конденсатор явился прообразом фотоэлемента). Этот прибор (С) включался последовательно с гальванометром (G) в цепь с батареей (В). При освещении катода сильным светом вольтовой дуги (А) гальванометр регистрировал наличие тока в цепи. С помощью такой установки Столетов изучал различные стороны фотоэффекта. На основании результатов своих экспериментов он делает следующие выводы: необходимым условием фотоэффекта является поглощение света материалом катода; каждый элемент поверхности катода участвует в явлении независимо от других; явление фотоэффекта практически безынерционно («...ток появляется и исчезает одновременно с освещением и, следовательно, при прерывистом освещении ток — также прерывистый с тем же периодом»). Меняя напряжение на электродах, Столетов получает вольт-амперную характеристику фотоэлемента (сетчатого конденсатора): фототок возрастает с увеличением напряжения между электродами, а малые токи пропорциональны напряжению; начиная с некоторого значения напряжения фототок практически не меняется при увеличении напряжения, т. е. фототок стремится к насыщению. Поместив прибор в стеклянный цилиндр, из которого можно было откачивать воздух, ученый обнаружил, что по мере уменьшения давления воздуха фототок возрастает, достигает максимума и затем убывает.

5.Действие магнитного поля на движущийся заряд. Сила Лоренца. Сила Лоренца- сила, действующая со стороны магнитного поля на движущуюся электрически заряженную частицу.

где q - заряд частицы;V - скорость заряда; B - индукции магнитного поля; a - угол между вектором скорости заряда и вектором магнитной индукции.

Направление силы Лоренца определяется по правилу левой руки:

Если поставить левую руку так, чтобы перпендикулярная скорости составляющая вектора индукции входила в ладонь, а четыре пальца были бы расположены по направлению скорости движения положительного заряда (или против направления скорости отрицательного заряда), то отогнутый большой палец укажет направление силы Лоренца

6.Дисперсия света Диспе́рсия све́та (разложение света) — это явление, обусловленное зависимостью абсолютного показателя преломления вещества от частоты (или длины волны) света (частотная дисперсия), или, то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты). Экспериментально открыта Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее. Пространственной дисперсией называется зависимость тензора диэлектрической проницаемости среды от волнового вектора. такая зависимость вызывает ряд явлений, называемых эффектами пространственной поляризации. Один из самых наглядных примеров дисперсии — разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является неодинаковая скорость распространения лучей света c различной длиной волны в прозрачном веществе — оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета). Обычно чем больше частота волны, тем больше показатель преломления среды и меньше ее скорость света в ней:

  • у красного цвета максимальная скорость в среде и минимальная степень преломления,

  • у фиолетового цвета минимальная скорость света в среде и максимальная степень преломления.

Дисперсия света позволила впервые вполне убедительно показать составную природу белого света.

По аналогии с дисперсией света, также дисперсией называются и сходные явления зависимости распространения волн любой другой природы от длины волны (или частоты). По этой причине, например, термин закон дисперсии, применяемый как название количественного соотношения, связывающего частоту и волновое число, применяется не только к электромагнитной волне, но к любому волновому процессу. Дисперсией объясняется факт появления радуги после дождя (точнее тот факт, что радуга разноцветная, а не белая). Дисперсия является причиной хроматических аберраций — одних из аберраций оптических систем, в том числе фотографических и видео-объективов.

7.Дифракция света. Дифракционная решетка Дифракцией называется - огибание волнами препятствий, встречающихся на их пути, или в более широком смысле - любое отклонение распространения волн вблизи препятствий от законов геометрической оптики. Благодаря дифракции волны могут попадать в область геометрической тени, огибать препятствия, проникать через небольшие отверстия в экранах и т. д. Например, звук хорошо слышен за углом дома, т. е. звуковая волна его огибает. Явление дифракции объясняется с помощью принципа Гюйгенса , согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн задает положение волнового фронта в следующий момент времени. Дифракционная решётка — оптический прибор, работающий по принципу дифракции света, представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность. Первое описание явления сделал Джеймс Грегори, который использовал в качестве решётки птичьи перья. Виды решёток

  • Отражательные: Штрихи нанесены на зеркальную (металлическую) поверхность, и наблюдение ведется в отражённом свете

  • Прозрачные: Штрихи нанесены на прозрачную поверхность (или вырезаются в виде щелей на непрозрачном экране), наблюдение ведется в проходящем свете

Описание явления

Фронт световой волны разбивается штрихами решётки на отдельные пучки когерентного света. Эти пучки претерпевают дифракцию на штрихах и интерферируют друг с другом. Так как для разных длин волн максимумы интерференции оказываются под разными углами (определяемыми разностью хода интерферирующих лучей), то белый свет раскладывается в спектр.

Формулы

Расстояние, через которое повторяются штрихи на решётке, называют периодом дифракционной решётки. Обозначают буквой d.

Если известно число штрихов ( ), приходящихся на 1 мм решётки, то период решётки находят по формуле:   мм.

Условия интерференционных максимумов дифракционной решётки, наблюдаемых под определёнными углами, имеют вид:

где

 — период решётки,

 — угол максимума данного цвета,

 — порядок максимума, то есть порядковый номер максимума, отсчитанный от центра картинки,

 — длина волны.

Если же свет падает на решётку под углом  , то:

Характеристики

Одной из характеристик дифракционной решётки является угловая дисперсия. Предположим, что максимум какого-либо порядка наблюдается под углом φ для длины волны λ и под углом φ+Δφ — для длины волны λ+Δλ. Угловой дисперсией решётки называется отношение D=Δφ/Δλ. Выражение для D можно получить если продифференцировать формулу дифракционной решётки

Таким образом, угловая дисперсия увеличивается с уменьшением периода решётки d и возрастанием порядка спектра k.

8.Естественная радиоактивность и ее применение Естественной радиоактивностью называется самопроизвольное превращение атомных ядер одного химического элемента в ядра атомов другого химического элемента, сопровождаемое радиоактивным излучением. Открытие явления - 1896 г. французский ученый Анри Беккерель при постановке опытов с солями урана.  Без каких-либо внешних влияний на уран А. Беккерелем было зарегистрировано неизвестное излучение. В 1898 г. М. Склодовская - Кюри обнаружила излучение тория. а также открыла новые радиоактивные химические элементы полоний и радий.  Все химические элементы с порядковым номером более 83 являются радиоактивными.  Естественная радиоактивность химических элементов не зависит от внешних условий. Три вида радиоактивного излучения В 1899 г. Э. Резерфорд обнаружил, что радиоактивное излучение состоит из двух компонентов, которые он назвал "альфа-лучи" и "бета-лучи". В 1900г. французский физик Ф. Вилард установил, что в состав излучения входят еще и гамма-лучи.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]