
- •Механическое движение. Виды движения. Относительность движения.
- •Основные кинематические характеристики: траектория, путь, перемещение, скорость, ускорение.
- •Сила тяготения. Закон всемирного тяготения.
- •Сила трения. Виды трения. Сила трения скольжения.
- •Импульс тела. Закон сохранения импульса.
- •3)Взаимодействие частиц
- •Строение и свойства газообразных, жидких и твердых тел.
- •Твердые тела делятся на кристаллы и аморфные тела.
- •Идеальный газ. Основное уравнение мкт газа.
- •Существуют:
- •Уравнение состояния идеального газа (Уравнение Менделеева – Клапейрона)
- •Изопроцессы в газах: изотермический, изобарный, изохорный.
- •Испарение и конденсация. Насыщенные и ненасыщенные пары.
- •Характеристиками в. В. Служат:
- •Внутренняя энергия. Изменение внутренней энергии газа в процессе теплообмена и совершенной работе. Работа в термодинамике.
- •Первый закон термодинамики и его применение к изопроцессам.
- •Частные случаи первого закона термодинамики для изопроцессов
- •Тепловые двигатели. Виды тепловых двигателей. Кпд теплового двигателя и охрана окружающей среды.
- •Работа, совершаемая двигателем, равна:
- •Электрический заряд. Электризация тел. Закон сохранения заряда.
- •Взаимодействие заряженных тел. Закон Кулона.
- •Электрическое поле. Графическое изображение полей точечных зарядов. Напряженность и потенциал.
- •Проводники и диэлектрики в электрическом поле.
- •Конденсаторы. Электроемкость конденсатора. Соединение конденсаторов. Энергия электрического поля. Применение конденсаторов.
- •Закон Ома для участка цепи:
- •Работа и мощность постоянного тока. Закон Джоуля – Ленца.
- •Мощность тока- отношение работы тока за время t к этому интервалу времени.
- •Закон Джоуля – Ленца:
- •Законы последовательного и параллельного соединения проводников
- •Источники тока. Сторонние силы. Электродвижущая сила. Закон Ома для полной цепи.
- •Применение электролиза
- •Полупроводники. Собственная и примесная проводимости полупроводников. Полупроводниковый диод.
- •Собственная проводимость бывает двух видов:
- •Примесная проводимость:
- •Свойства постоянного магнитного поля:
- •Компас и мпз
- •Намагничивание. Магнитные свойства веществ. Виды магнитных веществ.
- •Действие мп на проводник с током:
- •Колебательные движения. Гармоничные колебания и их характеристика: амплитуда, период, частота. Уравнение движения и график гармонического колебания.
- •Математический и пружинный маятники. Периоды колебаний математического и пружинного маятников. Превращение энергии при колебательном движении маятников.
- •Свободные и вынужденные электромагнитные колебания. Колебательный контур. Превращения энергии при электромагнитных колебаниях. Формула Томсона.
- •Генератор переменного тока. Трансформатор его устройство и назначение. Передача и распределение электроэнергии.
- •Опыты Герца. Электромагнитные волны и их свойства. Радиолокация и ее применение. Принцип радиосвязи.
- •Механические волны. Продольные и поперечные волны. Звуковые волны и их характеристики.
- •Геометрическая оптика. Законы отражения и преломления света. Полное внутреннее отражение и его применение.
- •Дифракция света. Дифракционная решетка. Поляризация света.
- •Дисперсия света. Шкала электромагнитных волн(радиоволны, ультрафиолетовое, инфракционное, рентгеновское и гамма излучения) их свойства и практическое применение.
- •Спектр. Спектральные приборы. Виды спектров. Спектральный анализ и его применение.
- •Постулаты специальной теории относительности Эйнштейна. Преобразования Лоренца. Полная энергия. Энергия покоя. Релятивистский импульс.
- •Квантовая природа света. Фотоэффект. Опыты а.Г. Столетова. Законы фотоэффекта. Уравнение Эйнштейна для фотоэффекта. Фотон. Применение фотоэффекта в технике.
- •Опыты Резерфорда по рассеванию альфа–частиц. Планетарная модель атома. Квантовые постулаты Бора и линейчатые структуры.
- •Радиоактивность. Виды радиоактивных излучений. Влияние ионизирующей радиации на живые организмы.
- •Модели строения атомного ядра. Ядерные силы. Нуклонная модель ядра.
- •Дефект массы атомных ядер. Энергия связи атомных ядер.
- •Ядерные реакции. Законы сохранения, выполняющиеся при ядерных реакциях. Энергетический выход ядерных реакций.
- •Закон сохранения энергии:
- •Реакция деления ядер урана. Управляемая ядерная реакция. Ядерная энергетика. Ядерный реактор. Термоядерный синтез и условия его осуществления.
- •Делиться могут только ядра некоторых тяжелых элементов, например, урана.
- •Солнечная система. Звезды и источники их энергии. Современные представления о происхождении и эволюции Солнца и звезд.
- •Наша галактика. Пространственные масштабы наблюдаемой Вселенной. Современные взгляды на строение и эволюцию Вселенной.
- •Научные методы познания окружающего мира. Физические законы и теории, гипотезы. Границы применимости физических законов и теорий. Моделирование явлений и объектов природы.
Проводники и диэлектрики в электрическом поле.
Проводники – вещества, в которых очень много свободных носителей заряда.
Основная особенность проводников – наличие свободных зарядов (электронов), которые участвуют в тепловом движении и могут перемещаться по всему объему проводника. Типичные проводники – металлы.
Диэлектрики(изоляторы) – вещества, в которых очень мало носителей тока.
Виды:
Полярные – молекулы содержат разделенные заряды.
Неполярные – молекулы содержат неразделенные заряды.
У неполярных молекул происходит разделение заряд – поляризация.
К диэлектрикам относятся: воздух и другие газы, стекло, различные смолы, пластмассы, многие виды резины.
Бывают:
Пассивные – используются в качестве применения электроизоляционных материалах.
Активные – управляемые свойства; используются в сегнетоэлектрике, пьезоэлектрике, материалах для излучателей и затворов в лазерной технике и другое.
Электрический заряд молекул диэлектрика:
а) без внешнего поля.
б) при наличии поля.
Конденсаторы. Электроемкость конденсатора. Соединение конденсаторов. Энергия электрического поля. Применение конденсаторов.
Конденсатор — это система из двух проводников (обкладок), разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников.
Так, например, две плоские металлические пластины, расположенные параллельно и разделенные слоем диэлектрика, образуют плоский конденсатор.
Физическая величина, определяемая отношением заряда q одной из пластин конденсатора к напряжению между обкладками конденсатора, называется электроемкостью конденсатора:
Единица СИ электроемкости в международной системе — фарад (Ф)
Применение конденсаторов. Конденсаторы как накопители электрических зарядов и энергии электрического поля широко применяются в различных радиоэлектронных приборах и электротехнических устройствах. Они используются для сглаживания пульсаций в выпрямителях переменного тока, для разделения постоянной и переменной составляющих тока, в электрических колебательных контурах радиопередатчиков и радиоприемников, для накопления больших запасов электрической энергии при проведении физических экспериментов в области лазерной техники и управляемого термоядерного синтеза.
Соединение конденсаторов бывает:
Последовательное – при последовательном соединении заряды на всех конденсаторах одинаковые, а напряжения разные.
1/C = 1/C1 + 1/C2 + 1/C3 + 1/Ca
Когда соединены только два конденсатора, вы можете использовать ту же формулу, что и для двух резисторов, соединенных параллельно.
Параллельное – при параллельном соединении напряжения на всех конденсаторах одинаковые, а заряды – разные.
Когда конденсаторы соединены параллельно, общая емкость - это сумма емкостей каждого конденсатора, а формула:
Cобщ=C1+C2+…+Ca
Электрический ток. Сила тока. Электрическое напряжение. Сопротивление проводника. Закон Ома для участка пути.
Электрический ток – упорядоченное движение электрических частиц, электронов или ионов.
Условия существования частиц (тока):
Наличие свободных заряженных частиц.
Поддержание на концах проводника разность потенциалов.
Направление тока – направление движения «+» частиц.
Сила тока – определяет величину заряда, проходящего через поперечное сечение проводника за единицу времени.
I=q/t, где I-сила тока, q-заряд, t-время прохождения заряда.
Электрическое напряжение = разности потенциалов на концах цепи, определяет работу тока по перенесению заряда в 1кулон вдоль проводника.
U=Aтока/q (Вольт), где U-напряжение, Aтока-работа тока, q-заряд.
Сопротивление — электрическая характеристика проводника, его способность проводить электрический ток.
где R
— сопротивление, U
— разность электрических потенциалов
на концах проводника, I
— сила тока, протекающего между концами
проводника под действием разности
потенциалов.
Удельное сопротивление проводника зависит от рода вещества.