
- •Механическое движение. Виды движения. Относительность движения.
- •Основные кинематические характеристики: траектория, путь, перемещение, скорость, ускорение.
- •Сила тяготения. Закон всемирного тяготения.
- •Сила трения. Виды трения. Сила трения скольжения.
- •Импульс тела. Закон сохранения импульса.
- •3)Взаимодействие частиц
- •Строение и свойства газообразных, жидких и твердых тел.
- •Твердые тела делятся на кристаллы и аморфные тела.
- •Идеальный газ. Основное уравнение мкт газа.
- •Существуют:
- •Уравнение состояния идеального газа (Уравнение Менделеева – Клапейрона)
- •Изопроцессы в газах: изотермический, изобарный, изохорный.
- •Испарение и конденсация. Насыщенные и ненасыщенные пары.
- •Характеристиками в. В. Служат:
- •Внутренняя энергия. Изменение внутренней энергии газа в процессе теплообмена и совершенной работе. Работа в термодинамике.
- •Первый закон термодинамики и его применение к изопроцессам.
- •Частные случаи первого закона термодинамики для изопроцессов
- •Тепловые двигатели. Виды тепловых двигателей. Кпд теплового двигателя и охрана окружающей среды.
- •Работа, совершаемая двигателем, равна:
- •Электрический заряд. Электризация тел. Закон сохранения заряда.
- •Взаимодействие заряженных тел. Закон Кулона.
- •Электрическое поле. Графическое изображение полей точечных зарядов. Напряженность и потенциал.
- •Проводники и диэлектрики в электрическом поле.
- •Конденсаторы. Электроемкость конденсатора. Соединение конденсаторов. Энергия электрического поля. Применение конденсаторов.
- •Закон Ома для участка цепи:
- •Работа и мощность постоянного тока. Закон Джоуля – Ленца.
- •Мощность тока- отношение работы тока за время t к этому интервалу времени.
- •Закон Джоуля – Ленца:
- •Законы последовательного и параллельного соединения проводников
- •Источники тока. Сторонние силы. Электродвижущая сила. Закон Ома для полной цепи.
- •Применение электролиза
- •Полупроводники. Собственная и примесная проводимости полупроводников. Полупроводниковый диод.
- •Собственная проводимость бывает двух видов:
- •Примесная проводимость:
- •Свойства постоянного магнитного поля:
- •Компас и мпз
- •Намагничивание. Магнитные свойства веществ. Виды магнитных веществ.
- •Действие мп на проводник с током:
- •Колебательные движения. Гармоничные колебания и их характеристика: амплитуда, период, частота. Уравнение движения и график гармонического колебания.
- •Математический и пружинный маятники. Периоды колебаний математического и пружинного маятников. Превращение энергии при колебательном движении маятников.
- •Свободные и вынужденные электромагнитные колебания. Колебательный контур. Превращения энергии при электромагнитных колебаниях. Формула Томсона.
- •Генератор переменного тока. Трансформатор его устройство и назначение. Передача и распределение электроэнергии.
- •Опыты Герца. Электромагнитные волны и их свойства. Радиолокация и ее применение. Принцип радиосвязи.
- •Механические волны. Продольные и поперечные волны. Звуковые волны и их характеристики.
- •Геометрическая оптика. Законы отражения и преломления света. Полное внутреннее отражение и его применение.
- •Дифракция света. Дифракционная решетка. Поляризация света.
- •Дисперсия света. Шкала электромагнитных волн(радиоволны, ультрафиолетовое, инфракционное, рентгеновское и гамма излучения) их свойства и практическое применение.
- •Спектр. Спектральные приборы. Виды спектров. Спектральный анализ и его применение.
- •Постулаты специальной теории относительности Эйнштейна. Преобразования Лоренца. Полная энергия. Энергия покоя. Релятивистский импульс.
- •Квантовая природа света. Фотоэффект. Опыты а.Г. Столетова. Законы фотоэффекта. Уравнение Эйнштейна для фотоэффекта. Фотон. Применение фотоэффекта в технике.
- •Опыты Резерфорда по рассеванию альфа–частиц. Планетарная модель атома. Квантовые постулаты Бора и линейчатые структуры.
- •Радиоактивность. Виды радиоактивных излучений. Влияние ионизирующей радиации на живые организмы.
- •Модели строения атомного ядра. Ядерные силы. Нуклонная модель ядра.
- •Дефект массы атомных ядер. Энергия связи атомных ядер.
- •Ядерные реакции. Законы сохранения, выполняющиеся при ядерных реакциях. Энергетический выход ядерных реакций.
- •Закон сохранения энергии:
- •Реакция деления ядер урана. Управляемая ядерная реакция. Ядерная энергетика. Ядерный реактор. Термоядерный синтез и условия его осуществления.
- •Делиться могут только ядра некоторых тяжелых элементов, например, урана.
- •Солнечная система. Звезды и источники их энергии. Современные представления о происхождении и эволюции Солнца и звезд.
- •Наша галактика. Пространственные масштабы наблюдаемой Вселенной. Современные взгляды на строение и эволюцию Вселенной.
- •Научные методы познания окружающего мира. Физические законы и теории, гипотезы. Границы применимости физических законов и теорий. Моделирование явлений и объектов природы.
3)Взаимодействие частиц
Существование устойчивых жидких и твёрдых тел объясняется наличием сил межмолекулярного взаимодействия (сил взаимного притяжения и отталкивания). Этими же причинами объясняется малая сжимаемость жидкостей и способность твёрдых тел сопротивляться деформациям сжатия и растяжения.
Силы межмолекулярного взаимодействия имеют электромагнитную природу – это силы электрического происхождения. Причиной этого является то, что молекулы и атомы состоят из заряженных частиц с противоположными знаками зарядов – электронов и положительно заряженных атомных ядер. В целом молекулы электрически нейтральны. По электрическим свойствам молекулу можно приближённо рассматривать как электрический диполь.
Силы притяжения принято считать отрицательными, а силы отталкивания – положительными, хотя это деления является условным.
Строение и свойства газообразных, жидких и твердых тел.
Газ - агрегатное состояние вещества, в котором частицы не связаны или весьма слабо связаны силами взаимодействия; кинетическая энергия теплового движения его частиц (молекул, атомов) значительно превосходит потенциальную энергию взаимодействий между ними, поэтому частицы движутся почти свободно, целиком заполняя сосуд, в котором находятся, и принимают его форму. Любое вещество можно перевести в газообразное, изменяя давление и температуру.
Жидкость - агрегатное состояние вещества, промежуточное между твердым и газообразным. Для нее характерна большая подвижность частиц и малое свободное пространство между ними. Это приводит к тому, что жидкости сохраняют свой объем и принимают форму сосуда. В то же время жидкость обладает рядом только ей присущих свойств, одно из которых - текучесть.
В жидкости молекулы размещаются очень близко друг к другу. Поэтому плотность жидкости гораздо больше плотности газов (при нормальном давлении). Свойства жидкости по всем направлениям одинаковы (изотропны) за исключением жидких кристаллов.
При нагревании или уменьшении плотности свойства жидкости, теплопроводность, вязкость меняются, как правило, в сторону сближения со свойствами газов.
Тепловое движение молекул жидкости состоит из сочетания коллективных колебательных движений и происходящих время от времени скачков молекул из одних положений равновесия в другие. При наличии внешней силы, сохраняющей свое направление более длительное время, чем интервалы между скачками, молекулы перемещаются в направлении этой силы, что и приводит к текучести жидкости.
Твердые тела - агрегатное состояние вещества, характеризующееся стабильностью формы и характером теплового движения атомов. Это движение вызывает колебания атомов (или ионов), из которых состоит твердое тело. Амплитуда колебаний обычно мала по сравнению с межатомными расстояниями.
Твердые тела делятся на кристаллы и аморфные тела.
В кристаллах атомы (или ионы) расположены в пространстве в узлах кристаллической решетки и колеблются около них. Строгая периодичность в расположении атомов приводит к сохранению порядка на больших расстояниях.
В аморфных телах атомы колеблются около хаотически расположенных точек. Свойства аморфных тел: они изотропны, не имеют постоянной температуры плавления, обладают текучестью.
По типам химической связи твердые тела делят на три класса, каждый из которых характеризуется определенным пространственным распределением электронов: 1) ионные кристаллы (NaCl, KaCl); 2) ковалентные (алмаз, Ge, Si); 3) металлические.