Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экзамен по физике(1-60).docx
Скачиваний:
4
Добавлен:
25.09.2019
Размер:
623.51 Кб
Скачать

Экзамен по физике: II семестр (ответы)

1 Электри́ческий ток — упорядоченное нескомпенсированное движение свободных электрически заряженных частиц, например, под воздействием электрического поля. Такими частицами могут являться: в проводниках — электроны, в электролитах — ионы (катионы и анионы), в газах - ионы и электроны, в вакууме при определенных условиях - электроны, в полупроводниках — электроны и дырки (электронно-дырочная проводимость).

Электрический ток широко используется в энергетике для передачи энергии на расстоянии.

В медицине электрический ток используют в реанимации, электростимуляции определённых областей головного мозга. Электрические разряды применяются для лечения таких заболеваний, как болезнь Паркинсона и эпилепсия, также для электрофореза. Водитель ритма, стимулирующий сердечную мышцу импульсным током, используют при брадикардии.

Силой тока называется физическая величина, равная отношению количества заряда, прошедшего за некоторое время через поперечное сечение проводника, к величине этого промежутка времени.

Сила тока в системе СИ измеряется в Амперах.

По закону Ома сила тока для участка цепи прямо пропорциональна приложенному напряжению к участку цепи и обратно пропорциональна сопротивлению проводника этого участка цепи :

Плотностью тока называется вектор, модуль которого равен отношению силы тока, протекающего через некоторую площадку, перпендикулярную направлению тока, к величине этой площадки, а направление вектора совпадает с направлением движения положительного заряда в токе.

Согласно закону Ома плотность тока в среде пропорциональна напряжённости электрического поля и проводимости среды :

Плотность тока в системе СИ измеряется в амперах на квадратный метр.

2 Электри́ческое сопротивле́ние — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему[1]. Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

где

R — сопротивление;

U — разность электрических потенциалов на концах проводника;

I — сила тока, протекающего между концами проводника под действием разности потенциалов.

3) Термическое сопротивление — тепловое сопротивление, способность тела (его поверхности или какого-либо слоя) препятствовать распространению теплового движения молекул.

Виды термического сопротивления

Различают полное термическое сопротивление — величину, обратную коэффициенту теплопередачи, поверхностное термическое сопротивление — величину, обратную коэффициенту теплоотдачи, и термическое сопротивление слоя, равное отношению толщины слоя к его коэффициенту теплопроводности.

[править]

Термическое сопротивление сложной системы

Термическое сопротивление сложной системы (например, многослойной тепловой изоляции) равно сумме термических сопротивлений её частей.

[править]

Формулы для расчёта

Общая формула:

где:

  •  — тепловое сопротивление на участке тепловой цепи, K / Вт

  •  — температура начала участка, K

  •  — температура конца участка, K

 — тепловой поток, протекающий через участок цепи, Вт

4) Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.

ЭДС можно выразить через напряжённость электрического поля сторонних сил ( ). В замкнутом контуре ( ) тогда ЭДС будет равна:

, где  — элемент длины контура.

Причиной электродвижущей силы может стать изменение магнитного поля в окружающем пространстве. Это явление называется электромагнитной индукцией. Величина ЭДС индукции в контуре определяется выражением

5\6) Зако́н О́ма — физический закон, определяющий связь между Электродвижущей силой источника или напряжением с силой тока и сопротивлением проводника. Экспериментально установлен в 1826 году, и назван в честь его первооткрывателя Георга Ома.

В своей оригинальной форме он был записан его автором в виде : ,

Здесь X — показания гальванометра, т.е в современных обозначениях сила тока I, a — величина, характеризующая свойства источника тока, постоянная в широких пределах и не зависящая от величины тока, то есть в современной терминологии электродвижущая сила (ЭДС) , l — величина, определяемая длиной соединяющих проводов.

Закон Ома для полной цепи:

, (2)

где:

  •  — ЭДС источника напряжения(В),

  •  — сила тока в цепи (А),

  •  — сопротивление всех внешних элементов цепи(Ом) ,

 — внутреннее сопротивление источника напряжения(Ом) .

Из Закона Ома для полной цепи вытекают следствия:

  • При r<<R Сила тока в цепи обратно пропорциональна её сопротивлению. А сам источник в ряде случаев может быть назван источником напряжения

  • При r>>R Сила тока от свойств внешней цепи (от величины нагрузки) не зависит. И источник может быть назван источником тока.

Часто[2] выражение:

(3)

(где есть напряжение или падение напряжения, или, что то же, разность потенциалов между началом и концом участка проводника) тоже называют «Законом Ома».

7) Последовательное и параллельное соединения в электротехнике — два основных способа соединения элементов электрической цепи. При последовательном соединении все элементы связаны друг с другом так, что включающий их участок цепи не имеет ни одного узла. При параллельном соединении все входящие в цепь элементы объединены двумя узлами и не имеют связей с другими узлами, если это не противоречит условию.

При последовательном соединении проводников сила тока во всех проводниках одинакова.

При параллельном соединении падение напряжения между двумя узлами, объединяющими элементы цепи, одинаково для всех элементов. При этом величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

Последовательное соединение проводников.

Параллельное соединение проводников.

8) Электри́ческий ток — упорядоченное нескомпенсированное движение свободных электрически заряженных частиц, например, под воздействием электрического поля. Такими частицами могут являться: в проводниках — электроны, в электролитах — ионы (катионы и анионы), в газах - ионы и электроны, в вакууме при определенных условиях - электроны, в полупроводниках — электроны и дырки (электронно-дырочная проводимость).

Электрический ток широко используется в энергетике для передачи энергии на расстоянии.

При наличии тока в проводнике совершается работа против сил сопротивления. Эта работа выделяется в виде тепла. Мощностью тепловых потерь называется величина, равная количеству выделившегося тепла в единицу времени. Согласно закону Джоуля — Ленца мощность тепловых потерь в проводнике пропорциональна силе протекающего тока и приложенному напряжению:

Мощность измеряется в ваттах

В сплошной среде объёмная мощность потерь определяется скалярным произведением вектора плотности тока и вектора напряжённости электрического поля в данной точке:

Объёмная мощность измеряется в ваттах на кубический метр.

9)     Электрический ток нагревает проводник. Это явление нам хорошо известно. Объясняется оно тем, что свободные электроны в металлах, перемещаясь под действием электрического поля, взаимодействуют с ионами или атомами вещества проводника и передают им свою энергию. В результате работы электрического тока увеличивается скорость колебаний ионов и атомов и внутренняя энергия проводника увеличивается. Опыты показывают, что в неподвижных металлических проводниках вся работа тока идет на увеличение их внутренней энергии. Нагретый проводник отдает полученную энергию окружающим телам, но уже путем теплопередачи. Значит, количество теплоты, выделяемое проводником, по которому течет ток, равно работе тока. Мы знаем, что работу тока рассчитывают по формуле:
    А = U·I·t.
    Обозначим количество теплоты буквой Q. Согласно сказанному выше Q = A, или Q = U·I·t. Пользуясь законом Ома, можно количество теплоты, выделяемое проводником с током, выразить через силу тока, сопротивление участка цепи и время. Зная, что U = IR, получим: Q = I·R·I·t, т. е. Q=I ·R·t Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени. К этому же выводу, но на основании опытов впервые пришли независимо друг от друга английский ученый Джоуль и русский ученый Ленц. Поэтому сформулированный выше вывод называется законом Джоуля - Ленца.

10) Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику переноса вещества не происходит, следовательно, ионы металла не принимают участия в переносе электрического заряда.

При торможении вращающейся катушки на каждый носитель заряда e действует тормозящая сила которая играет роль сторонней силы, то есть силы неэлектрического происхождения. Сторонняя сила, отнесенная к единице заряда, по определению является напряженностью Eст поля сторонних сил:

11) Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. К электролитам относятся многие соединения металлов в расплавленном состоянии, а также некоторые твердые вещества. Однако основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований.

Прохождение электрического тока через электролит сопровождается выделением веществ на электродах. Это явление получило название электролиза.

12) В газах существуют несамостоятельные и самостояг тельные электрические разряды.

Явление протекания электрического тока через газ, наблюдаемое только при условии какого-либо внешнего воздействия на газ, называется несамостоятельным электрическим разрядом. Процесс отрыва электрона от атома называется ионизацией атома. Минимальная энергия, которую необходимо затратить для отрыва электрона от атома, называется энергией ионизации. Частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов одинаковы, называется плазмой.

Все газовые разряды делятся на два основных вида:

1. Несамостоятельный газовый разряд возникает в приборе при действии внешних (сторонних) ионизаторов. Этот разряд в свою очередь разделяется на несколько подвидов:

а) тихий разряд (возникает при воздействии на прибор ряда естественных ионизаторов: космических лучей, радиации земной коры, активной деятельности солнца и т. д.);

13) Если два электрода поместить в герметичный сосуд и удалить из сосуда воздух, то электрический ток в вакууме не возникает - нет носителей электрического тока. Американский ученый Т. А. Эдисон (1847-1931) в 1879 г. обнаружил, что в вакуумной стеклянной колбе может возникнуть электрический ток, если один из находящихся в ней электродов нагреть до высокой температуры. Явление испускания свободных электронов с поверхности нагретых тел называется термоэлектронной эмиссией. Работа, которую нужно совершить для освобождения электрона с поверхности тела, называется работой выхода. Явление термоэлектронной эмиссии объясняется тем, что при повышении температуры тела увеличивается кинетическая энергия некоторой части электронов в веществе. Если кинетическая энергия электрона превысит работу выхода, то он может преодолеть действие сил притяжения со стороны положительных ионов и выйти с поверхности тела в вакууме. На явлении термоэлектронной эмиссии основана работа различных электронных ламп.

Дио́д (от др.-греч. δις[1] — два и -од[2] означающего путь) — двухэлектродный электронный прибор, обладает различной проводимостью в зависимости от направления электрического тока. Электрод диода, подключённый к положительному полюсу источника тока, когда диод открыт (то есть имеет маленькое сопротивление), называют анодом, подключённый к отрицательному полюсу — катодом.

Эле́ктрова́куумный трио́д, или просто трио́д, — электронная лампа, имеющая 3 электрода: термоэлектронный катод (прямого или косвенного накала), анод и одну управляющую сетку. Изобретён и запатентован в 1906 году американцем Ли де Форестом.

14) электронно-лучевая трубка предназначена для отображения на люминесцентном экране электрических сигналов. Изображение на экране служит не только для визуальной оценки формы сигнала, но и для измерения его параметров, а в некоторых случаях – для фиксации его на фотоплёнку. Осциллографическая ЭЛТ представляет собой вакуумированную стеклянную колбу, внутри которой находятся электронная пушка, отклоняющая система и люминесцентный экран. Электронная пушка предназначена для формирования узкого пучка электронов и его фокусировки на экран. Электроны испускаются катодом косвенного накала с подогревателем за счет явления термоэлектронной эмиссии. Интенсивность электронного пучка и следовательно яркость пятна на экране регулируется отрицательным относительно катода напряжением на управляющем электроде. Первый анод служит для фокусировки, второй для ускорения электронов.Управляющий электрод и система анодов образуют фокусирующую систему.

15) p-n-Перехо́д (n — negative — отрицательный, электронный, p — positive — положительный, дырочный), или электронно-дырочный переход — область пространства на стыке двух полупроводников p- и n-типа, в которой происходит переход от одного типа проводимости к другому. p-n-Переход является основой для полупроводниковых диодов, триодов и других электронных элементов с нелинейной вольт-амперной характеристикой. полупроводнике p-типа концентрация дырок намного превышает концентрацию электронов. В полупроводнике n-типа концентрация электронов намного превышает концентрацию дырок. Если между двумя такими полупроводниками установить контакт, то возникнет диффузионный ток — носители заряда, хаотично двигаясь, перетекают из той области, где их больше, в ту область, где их меньше. При такой диффузии электроны и дырки переносят с собой заряд. Как следствие, область на границе станет заряженной, и область в полупроводнике p-типа, которая примыкает к границе раздела, получит дополнительный отрицательный заряд, приносимый электронами, а пограничная область в полупроводнике n-типа получит положительный заряд, приносимый дырками. Таким образом, граница раздела будет окружена двумя областями пространственного заряда противоположного знака.

Электрическое поле, возникающее вследствие образования областей пространственного заряда, вызывает дрейфовый ток в направлении, противоположном диффузионному току. В конце концов, между диффузионным и дрейфовым токами устанавливается динамическое равновесие, и перетекание зарядов прекращается.

16) Дио́д (от др.-греч. δις[1] — два и -од[2] означающего путь) — двухэлектродный электронный прибор, обладает различной проводимостью в зависимости от направления электрического тока. Электрод диода, подключённый к положительному полюсу источника тока, когда диод открыт (то есть имеет маленькое сопротивление), называют анодом, подключённый к отрицательному полюсу — катодом.

Транзи́стор (англ. transistor), полупроводниковый триод — радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, позволяющий входным сигналам управлять током в электрической цепи. Обычно используется для усиления, генерирования и преобразования электрических сигналов. На принципиальных схемах обозначается «VT» или «Q». В русскоязычной литературе и документации до 1970-х гг. применялись обозначения «Т», «ПП» (полупроводниковый прибор) или «ПТ» (полупроводниковый триод).

Управление током в выходной цепи осуществляется за счёт изменения входного напряжения или тока. Небольшое изменение входных величин может приводить к существенно большему изменению выходного напряжения и тока. Это усилительное свойство транзисторов используется в аналоговой технике (аналоговые ТВ, радио, связь и т. п.).

17) Магни́тное по́ле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения[1], магнитная составляющая электромагнитного поля[2]

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени) (постоянные магниты).

Кроме этого, оно появляется при наличии изменяющегося во времени электрического поля.

Основной силовой характеристикой магнитного поля является вектор магнитной индукции (вектор индукции магнитного поля)[3][4]. С математической точки зрения  — векторное поле, определяющее и конкретизирующее физическое понятие магнитного поля. Нередко вектор магнитной индукции называется для краткости просто магнитным полем (хотя, наверное, это не самое строгое употребление термина).

Ещё одной фундаментальной характеристикой магнитного поля (альтернативной магнитной индукции и тесно с ней взаимосвязанной, практически равной ей по физическому значению) является векторный потенциал.

18) Магни́тная инду́кция  — векторная величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Определяет, с какой силой магнитное поле действует на заряд , движущийся со скоростью .

Более конкретно,  — это такой вектор, что сила Лоренца , действующая со стороны магнитного поля[1] на заряд , движущийся со скоростью , равна

где косым крестом обозначено векторное произведение, α — угол между векторами скорости и магнитной индукции (направление вектора перпендикулярно им обоим и направлено по правилу буравчика).

Также магнитная индукция может быть определена[2] как отношение максимального механического момента сил, действующих на рамку с током, помещенную в однородное поле, к произведению силы тока в рамке на её площадь.

19) Напряжённость магни́тного по́ля — (стандартное обозначение Н) это векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M.

В СИ: , где - магнитная постоянная

В СГС:

  • В простейшем случае изотропной (по магнитным свойствам) среды и в приближении достаточно низких частот изменения поля B и H просто пропорциональны друг другу, отличаясь просто числовым множителем (зависящим от среды) B = μ H в системе СГС или B = μ0μ H в системе СИ (см. Магнитная проницаемость, также см. Магнитная восприимчивость).

В системе СГС напряжённость магнитного поля измеряется в Эрстедах (Э), в системе СИ — в амперах на метр (А/м). В технике Эрстед постепенно вытесняется единицей СИ — ампером на метр, 1 Э = 1000/(4π) А/м = 79,5775 А/м.

20) Магни́тный пото́к — поток как интеграл вектора магнитной индукции через конечную поверхность . Определяется через интеграл по поверхности

при этом векторный элемент площади поверхности определяется как

где — единичный вектор, нормальный к поверхности.

Также магнитный поток можно рассчитать как скалярное произведение вектора магнитной индукции на вектор площади:

где α — угол между вектором магнитной индукции и нормалью к плоскости площади.

Магнитный поток через контур также можно выразить через циркуляцию векторного потенциала магнитного поля по этому контуру:

21)

Сила , с которой магнитное поле действует на элемент проводника с током, находящегося в магнитном поле, прямо пропорциональна силе тока в проводнике и векторному произведению элемента длины проводника на магнитную индукцию :

.

22) Магнитные явления были известны еще в древнем мире. Компас был изобретен более 4500 лет тому назад. В Европе он появился приблизительно в XII веке новой эры. Однако только в XIX веке была обнаружена связь между электричеством и магнетизмом и возникло представление о магнитном поле.

Первыми экспериментами (проведены в 1820 г.), показавшими, что между электрическими и магнитными явлениями имеется глубокая связь, были опыты датского физика Х. Эрстеда. Эти опыты показали, что на магнитную стрелку, расположенную вблизи проводника с током, действуют силы, которые стремятся ее повернуть. В том же году французский физик А. Ампер наблюдал силовое взаимодействие двух проводников с токами и установил закон взаимодействия токов.

По современным представлениям, проводники с током оказывают силовое действие друг на друга не непосредственно, а через окружающие их магнитные поля.

Источниками магнитного поля являются движущиеся электрические заряды (токи). Магнитное поле возникает в пространстве, окружающем проводники с током, подобно тому, как в пространстве, окружающем неподвижные электрические заряды, возникает электрическое поле. Магнитное поле постоянных магнитов также создается электрическими микротоками, циркулирующими внутри молекул вещества (гипотеза Ампера).

Ученые XIX века пытались создать теорию магнитного поля по аналогии с электростатикой, вводя в рассмотрение так называемые магнитные заряды двух знаков (например, северный N и южный S полюса магнитной стрелки). Однако опыт показывает, что изолированных магнитных зарядов не существует.

23) Магнитное поле создается (порождается) током заряженных частиц, или изменяющимся во времени электрическим полем, или собственными магнитными моментами частиц (последние для единообразия картины могут быть формальным образом сведены к электрическим токам). Взаимодействие двух магнитов

Одно из наиболее часто встречающихся в обычной жизни проявлений магнитного поля — взаимодействие двух магнитов: одинаковые полюса отталкиваются, противоположные притягиваются. Представляется заманчивым описать взаимодействие между магнитами как взаимодействие между двумя монополями, и с формальной точки зрения эта идея вполне реализуема[8] и часто весьма удобна, а значит практически полезна (в расчетах); однако детальный анализ показывает, что на самом деле это не полностью правильное описание явления (наиболее очевидным вопросом, не получающим объяснения в рамках такой модели является вопрос о том, почему монополи никогда не могут быть разделены, то есть почему эксперимент показывает, что никакое изолированное тело на самом деле не обладает магнитным зарядом; кроме того, слабостью модели является то, что она неприменима к магнитному полю, создаваемому макроскопическим током, а значит, если не рассматривать её как чисто формальный прием, приводит лишь к усложнению теории в фундаментальном смысле).

Правильнее будет сказать, что на магнитный диполь помещённый в неоднородное поле действует сила, которая стремится повернуть его так, чтобы магнитный момент диполя был сонаправлен с магнитным полем. Но никакой магнит не испытывает действия (суммарной) силы со стороны однородного магнитного поля. Сила, действующая на магнитный диполь с магнитным моментом m выражается по формуле[9]:

.[10]

Сила, действующая на магнит (не являющийся одиночным точечным диполем) со стороны неоднородного магнитного поля, может быть определена суммированием всех сил (определяемых данной формулой), действующих на элементарные диполи, составляющие магнит.

Впрочем, возможен подход, сводящий взаимодействие магнитов к силе Ампера, а сама формула выше для силы, действующей на магнитный диполь, может быть получена исходя из силы Ампера тоже.

24) Сила Лоренца — сила, с которой, в рамках классической физики, электромагнитное поле действует на точечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью заряд лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообще[1], иначе говоря, со стороны электрического и магнитного полей. Выражается в СИ как:

Названа в честь голландского физика Хендрика Лоренца, который вывел выражение для этой силы в 1892 году. За три года до Лоренца правильное выражение было найдено Хевисайдом[2].

Макроскопическим проявлением силы Лоренца является сила Ампера.

25) Рассмотрим частный случай, когда нет электрического поля, но имеется магнитное поле. Предположим, что частица, обладающая начальной скоростью u0, попадает в магнитное поле с индукцией B. Это поле мы будем считать однородным и направленным перпендикулярно к скорости u0. Основные особенности движения в этом случае можно выяснить, не прибегал к полному решению уравнений движения. Прежде всего, отметим, что действующая на частицу сила Лоренца всегда перпендикулярна к скорости движения частицы. Это значит, что работа силы Лоренца всегда равна нулю; следовательно, абсолютное значение скорости движения частицы, а значит, и энергия частицы остаются постоянными при движении. Так как скорость частицы u не изменяется, то величина силы Лоренца

остается постоянной. Эта сила, будучи перпендикулярной, к направлению движения, является центростремительной силой. Но движение под действием постоянной по величине центростремительной силы есть движение по окружности. Радиус r этой окружности определяется условием

26) Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током. Согласно закону электромагнитной индукции Фарадея (в СИ):

где

 — электродвижущая сила, действующая вдоль произвольно выбранного контура,

 — магнитный поток через поверхность, натянутую на этот контур.

27) Опыты Фарадея, выполненные в 30-е годы XIX века, демонстрируют возникновение электрического тока в замкнутом проводящем контуре (цепь индикаторной катушки) при изменении магнитного потока. Модель является компьютерной иллюстрацией опытов Фарадея. В этих опытах магнитное поле можно создаваться либо постоянным магнитом, либо катушкой с током. Изменение магнитного потока, пронизывающего индикаторную катушку, достигается перемещением источника магнитного поля или самой катушки. Обратите внимание, что явление электромагнитной индукции в обоих случаях протекает одинаково. Магнитный поток, пронизывающий индикаторную катушку, изменяется при включении или выключении тока в первичной катушке, создающей магнитное поле. В этом случае в цепи индикаторной катушки также протекает короткий импульс тока.

28) Правило Ленца определяет направление индукционного тока и гласит:

Индукционный ток всегда имеет такое направление, что он ослабляет действие причины, возбуждающей этот ток.

Согласно закону электромагнитной индукции Фарадея при изменении магнитного потока , пронизывающего электрический контур, в нём возбуждается ток, называемый индукционным. Величина электродвижущей силы, ответственной за этот ток, определяется уравнением[1]:

29) Самоиндукция — возникновение ЭДС индукции в замкнутом проводящем контуре при изменении тока, протекающего по контуру.

При изменении тока в контуре пропорционально меняется[2] и магнитный поток через поверхность, ограниченную этим контуром[3]. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС.

Это явление и называется самоиндукцией. (Понятие родственно понятию взаимоиндукции, являясь как бы его частным случаем).

Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током). Этим свойством ЭДС самоиндукции сходна с силой инерции.

Величина ЭДС самоиндукции пропорциональна скорости изменения силы тока :

.

Коэффициент пропорциональности называется коэффициентом самоиндукции или индуктивностью контура (катушки).

30) Индукти́вность (или коэффициент самоиндукции) — коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность[1], краем которой является этот контур.[2][3][4].

В формуле

 — магнитный поток,  — ток в контуре,  — индуктивность.

Нередко говорят об индуктивности прямого длинного провода(см.). В этом случае и других (особенно - в не отвечающих квазистационарному приближению) случаях, когда замкнутый контур непросто адекватно и однозначно указать, приведенное выше определение требует особых уточнений; отчасти полезным для этого оказывается подход (упоминаемый ниже), связывающий индуктивность с энергией магнитного поля.

31) Приращение плотности энергии магнитного поля равно:

где:

H — напряжённость магнитного поля,

B — магнитная индукция

В линейном тензорном приближении ( ) плотность энергии равна:

где:

 — тензор магнитной проницаемости,

 — диагональные компоненты этого тензора,

 — магнитная постоянная

В изотропном линейном магнетике:

где:

 — относительная магнитная проницаемость

В вакууме и:

Энергию магнитного поля в катушке индуктивности можно найти по формуле:

где:

Ф — магнитный поток,

I — ток,

L — индуктивность катушки или витка с током.

32) С фундаментальной точки зрения, как это было указано выше, магнитное поле может создаваться (а значит — в контексте этого параграфа — и ослабляться или усиливаться) переменным электрическим полем, электрическими токами в виде потоков заряженных частиц или магнитными моментами частиц.

Конкретные микроскопическая структура и свойства различных веществ (а также их смесей, сплавов, агрегатных состояний, кристаллических модификаций и т. д.) приводят к тому, что на макроскопическом уровне они могут вести себя достаточно разнообразно под действием внешнего магнитного поля (в частности, ослабляя или усиливая его в разной степени).

В связи с этим вещества (и вообще среды) в отношении их магнитных свойств делятся на такие основные группы:

  • Антиферромагнетики — вещества, в которых установился антиферромагнитный порядок магнитных моментов атомов или ионов: магнитные моменты веществ направлены противоположно и равны по силе.

  • Диамагнетики — вещества, намагничивающиеся против направления внешнего магнитного поля.

  • Парамагнетики — вещества, которые намагничиваются во внешнем магнитном поле в направлении внешнего магнитного поля.

  • Ферромагнетики — вещества, в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов

  • Ферримагнетики — материалы, у которых магнитные моменты вещества направлены противоположно и не равны по силе.

К перечисленным выше группы веществ в основном относятся обычные твердые или (к некоторым) жидкие вещества, а также газы. Существенно отличается взаимодействие с магнитным полем сверхпроводников и плазмы.

33) Намагни́ченность(В том числе кривая) — векторная физическая величина, характеризующая магнитное состояние макроскопического физического тела. Обозначается обычно М или J. Определяется как магнитный момент единицы объёма вещества:

Здесь, M — вектор намагниченности; m - вектор магнитного момента; V — объём.

В общем случае (случае неоднородной, по тем или иным причинам, среды) намагниченность выражается как

и является функцией координат.

Связь между M и напряженностью магнитного поля H в диамагнитных и парамагнитных материалах, обычно линейна (по крайней мере, при не слишком больших величинах намагничивающего поля):

где χm называют магнитной восприимчивостью. В ферромагнитных материалах нет однозначной связи между M и H из-за магнитного гистерезиса.

Магнитная индукция определяется через намагниченность как:

(в системе СИ)

(в системе СГС)

34) Переменный ток получают путем вращения рамки в магнитном поле. Принцип действия — явление электромагнитной индукции (появление индукционного тока в замкнутом контуре при изменении магнитного потока). В генераторах переменного тока вращается якорь из магнита (электромагнита) с несколькими полюсами (2, 4, 6 и т. д.), а с обмоток статора снимается переменное напряжение.

35) В большинстве стран применяются частоты 50 или 60 Гц (60 - этот вариант принят в США) В некоторых странах, например, в Японии, используются оба стандарта. Частота 16 ⅔ Гц до сих пор используется в некоторых европейских железнодорожных сетях (Австрия, Германия, Норвегия, Швеция и Швейцария).

В текстильной промышленности, авиации и военном деле для снижения веса устройств или с целью повышения частот вращения применяют частоту 400 Гц, а в морфлоте 500 Гц.

36) Элемент С (ёмкость) Известно, что в емкости соотношение фаз ψu = ψi - 90°. Для мгновенной мощности получаем

pC(t) = u(t) I(t) = (Um Im) / 2 · sin(2ωt).

Среднее значение за период здесь также равно нулю. По аналогии с уравнением (2.36) вводят величину QC = I2 XC, которую называют реактивной (емкостной) мощностью. Единицей ее измерения также является ВАр.Если в цепи присутствуют элементы R, L и С, то активная и реактивная мощности определяются уравнениями

(2.37)

P = U I cos φ,

(2.38)

Q = QL - QC,

(2.39)

Q = U I sin φ,

где φ – угол сдвига фаз.

Вводят понятие полной мощности цепи

(2.40)

.

С учетом уравнений (2.37) и (2.39), (2.40) можно записать в виде

(2.41)

S = U I.

Единицей измерения полной мощности является ВА – вольт-ампер.

37) Для сравнения действий постоянного и переменного токов вводят понятие действующее значение переменного тока.

Действующее значение переменного тока численно равно такому постоянному току, при котором за время равное одному периоду в проводнике с сопротивлением R выделяется такое же количество тепловой энергии, как и при переменном токе.Определим количество энергии, выделяемой за период в проводнике с сопротивлением R для каждого из токов и приравняем их. ; .

38) Элемент L (индуктивность)

Известно, что в индуктивности соотношение фаз ψu = ψi + 90°. Для мгновенной мощности имеет

(2.35)

.

Усредняя уравнение (2.35) по времени за период Т получим

.

Для количественной оценки мощности в индуктивности используют величину QL равную максимальному значению рL

(2.36)

QL = (Um Im) / 2

и называют ее реактивной (индуктивной) мощностью. Единицей ее измерения выбрали ВАр (вольт-ампер реактивный). Уравнение (2.36) можно записать через действующие значения U и I и используя формулу UL = I XL получим

(2.37)

QL = I2 XL.

39) По аналогии с мощностью в цепях постоянного тока P = U I, в цепях переменного тока рассматривают мгновенную мощность p = u i. Для упрощения рассмотрим мгновенную мощность в каждом из элементов R, L и С отдельно.