Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы_по_Семисалову[1].DOC
Скачиваний:
32
Добавлен:
25.09.2019
Размер:
7.69 Mб
Скачать
  1. Устройства индикации

Устройства индикации предназначены для отображения визуальной информации о состоянии управляемого оборудования и используемой оператором или наладчиком. Основными требованиями к УИ являются:

  • надежность работы,

  • эффективность индикации ( размеры знаков, угол обзора, мощность излучения, цвет, КПД и т.д.),

  • объем одновременно индицируемой информации,

  • безопасность,

  • ремонтопригодность.

В настоящее время существует большое число индикаторов [1] , различающихся по принципу работы, конструктивному исполнению и другим параметрам. На рис. 4.17. приведена краткая классификация УИ, используемых в устройствах ЧПУ. УИ делятся на две группы: одиночные и групповые. Как и в случае с органами управления, к одиночным индикаторам относятся такие, в которых каждый светящийся элемент управляется с использованием отдельной сигнальной линии в канале связи индикатора с УЧПУ. К групповым индикаторам (дисплеям) относятся такие, в которых управление идет по ограниченному числу сигнальных линий, а увеличение объема индицируемой информации производится за счет соответствующей шифрации информации с последующим декодированием. Рассмотрим подробнее устройство и принцип работы некоторых УИ.

  1. Одино4ные индикаторы

Среди одиночных индикаторов довольно широкое распространение получили накальные индикаторы. Они применяются в основном для индикации медленно меняющихся процессов, обладают большой светоотдачей, поэтому используются в цепях с большими токами и напряжениями, а также при значительном удалении индикатора от места нахождения оператора или наладчика. Цвет свечения индикаторов обычно белый, а нужный цвет достигается использованием соответствующих светофильтров. Крупным недостатком накальных индикаторов является их низкая живучесть, что требует их частой замены, критичны они также и к вибрациям. Схема включения накальных индикаторов зависит главным образом от мощности используемого индикатора. На рис.4.18. показаны некоторые схемы включения накальных индикаторов. В УЧПУ накальные индикаторы применяются для сигнализации наличия сетевого питания, подсветки табло и в других случаях требующих большой мощности излучения. Накальные индикаторы всегда являются одноэлектродными, т.е. имеющими в одном конструктивном корпусе один светящийся элемент.

Более разнообразными свойствами обладают газоразрядные индикаторы, принцип действия которых основан на возникновении электрического разряда в газовом промежутке под действием приложенного напряжения. Данные индикаторы бывают как одноэлектродные, так и многоэлектродные. В последнем случае световой вид отображаемой информации соответствует конструктивному виду электрода или составляется из отдельных геометрических фигур, например, отрезков прямых линий. На рис. 4.19 показана схема включения точечного газоразрядного индикатора.

Газоразрядные индикаторы по сравнению с накальными имеют малый ток потребления, имеют большой ресурс работы, но имеют один существенный недостаток - требуют приложения большого (не менее 180 вольт) напряжения для возникновения разряда и несколько меньшее, но достаточно высокое (до 150 вольт) поддерживающее напряжение, поэтому чаще всего такие индикаторы применяются в цепях с высокими напряжениями, например, для индикации наличия сетевого питания УЧПУ. Газоразрядные индикаторы имеют очень малые токи потребления до 10...15 ма, поэтому в цепи индикатора обязательно устанавливается балластный резистор, величина сопротивления которого рассчитывается по формуле:

R = Uвх / Iмах (ом)

где: Uвх - величина входного напряжения на индикаторе, вольт, Iмах - предельно допустимое значение тока через данный индикатор по паспорту, ампер. Для управления газоразрядными УИ из-за высокого напряжения применяют либо реле, либо специальные авысоковольные транзисторы.

Для индикации в цепях с низкими уровнями сигналов более эффективными являются полупроводниковые УИ, в частности, светодиодные. На рис. 4.20. показан способ включения светодиодного индикатора. Напряжение питания таких индикаторов лежит в пределах 2,5 ... 10 вольт, и также как и в газоразрядных требуется малый ток (10...20 ма), поэтому в цепи индикатора обязательно наличие балластного резистора, рассчитываемого по той же формуле.

Для увеличения объема индицируемой информации в одиночных индикаторах широко применяются многоэлектродные УИ, из которых наибольшее распространение получили газоразрядные и светодиодные индикаторы.

Из газоразрядных УИ чаще всего применяются символьные газоразрядные индикаторы типа ИН4, ИН14 и аналогичные им. Для их включения разработаны специальные дешифраторы с высоковольтными усилителями в интегральном исполнении, например, микросхемы К155ИД1, К511ИД1 и др. На рис.4.21 показана схема включения индикатора типа ИН14. Этот индикатор представляет собой многокатодный газоразрядный прибор с одним анодом. Все катоды по форме соответствуют очертаниям индицируемых символов - цифр, включая и десятичную точку. Существуют также индикаторы с очертаниями букв и специальных знаков. Поскольку включен всегда может быть только один катод, то достаточно установить один ограничивающий резистор в цепи анода. Управление катодами (подача на них напряжения низкого уровня) осуществляется с помощью микросхемы К155ИД1, на вход которой подается четырехразрядный двоичный код ТТЛ-уровня. Подобная индикация может применяться в устройствах ЧПУ для индикации любой буквенно-цифровой информации, например, величины координаты, значения подачи, номера инструмента и т.п. Данные индикаторы обладают достаточно большой светоотдачей и высокой надежностью работы, однако как все газоразрядные приборы требуют высокого напряжения для своей работы.

В цепях с низким уровнем напряжений применяются полупроводниковые, в основном, светодиодные индикаторы двух типов: линейчатые и матричные. На рис. 4.22 Приведена схема индикации на основе семисегментного светодиодного индикатора типа АЛ305Г. Данный индикатор выполнен по схеме с общим анодом, поэтому в цепях катодов установлены ограничительные резисторы. Резисторы установлены в каждом катоде, так как одновременно могут быть включены два и более катодов. Сегменты представляют собой световые отрезки линий, расположенных определенным образом, из которых можно составить очертания цифр и некоторых букв. В составе индикатора есть также сегмент, отображающий десятичную точку, что позволяет строить индикаторы для отображения информации в привычной десятичной форме. Для управления сегментами также разработаны специальные дешифраторы: на приведенной на рис. 4.22 схеме показан дешифратор типа К514ИД2, предназначенный для работы с семисегментными индикаторами с общим анодом. Дешифратор типа К514ИД1 применяется для работы с индикаторами с общим катодом и раздельными анодами. На вход таких дешифраторов подается четырехразрядный двоичный код.

Существуют индикаторы со встроенными дешифраторами, например, индикатор типа 490ИП2 представляет собой семисегментный линейчатый индикатор со встроенным дешифратором, поэтому на входы индикатора подается только питающее напряжение и входной четырехразрядный двоичный код.

Линейчатые индикаторы просты и удобны в управлении, однако качество отображаемых символов, особенно букв, оставляет желать лучшего. Поэтому для более качественного отображения в современных устройствах ЧПУ применяются матричные индикаторы с различным числом строк и столбцов.

На рис.4.23 показан пример матричного светодиодного индикатора с размерами матрицы 7х5, т.е. знакообразующее поле состоит из семи строк и пяти столбцов, составленных из светодиодных точек. Для уменьшения числа линий управления таким индикатором, формирование изображения в нем производится построчно с большой скоростью переключения строк, что создает у оператора впечатление непрерывного свечения индикатора. На изображенной на рис.4.23 схеме изображение формируется следующим образом. На аноды составляющих строку светодиодов последовательно подается высокий (единичный) потенциал, а на катоды светодиодов, составляющих данную строку подается код, разряды которого имеют нулевые значения для светящихся точек и единичные - для несветящихся (темных) точек. Часто строки таких индикаторов называют строками разложения, поскольку они являются составляющими строками изображения индицируемого символа. Таким образом для индикации нужных символов на входы столбцов и строк необходимо подавать сигналы в соответствии с таблицей кодирования каждого символа. Фрагмент таблицы кодирования символа «7» приведен в таблице 4.2.

Таблица 4.2.

Код столбца

Код строки разложения

0000

11110

11110

11101

11011

11011

11011

1000000

0100000

0010000

0001000

0000100

0000010

0000001

Как видно из рис.4.23 схема управления такими индикаторами сложнее, чем линейчатыми, поэтому матричные индикаторы применяются обычно в составе различного типа дисплеев, устройство которых рассмотрено ниже.

В тех случаях когда требуется индикация сигнала не имеющего цифрового значения применяются простые индикаторы уровня сигнала. На рис. 4.24. показан пример такого индикатора на основе светодиодной сборки АЛС317В. Для управления каждым светодиодом применяются ряд компараторов, настраиваемых с помощью резисторов на различные уровни срабатывания. По мере увеличения уровня сигнала срабатывают соответствующие компараторы, зажигая требуемые светодиоды. Такие индикаторы применяются в тех случаях, когда не требуется высокая точность и дискретность отобрения уровня сигнала. Если же требуется отображать сигнал с высокой точностью и малой дискретностью целесообразно сигнал преобразовать в цифровой вид с помощью устройств АЦП, а в дальнейшем применять рассмотренные выше индикаторы.