
- •Основные физические свойства жидкостей и газов: плотность, удельный вес, удельный объем, сжимаемость, температурное расширение, вязкость, поверхностное натяжение, смачивание.
- •Поверхностное натяжение. Смачивание.
- •Силы, действующие в жидкостях. Абсолютный и относительный покой жидких сред.
- •Гидростатическое давление и его свойства (доказать).
- •Уравнения Эйлера для покоящейся жидкости.
- •Основное уравнение гидростатики
- •Распределение давления в покоящейся жидкости и газе (закон Паскаля).
- •Эпюры гидростатического давления
- •А) пьезометр
- •Б) манометр
- •В) дифференциальный манометр
- •Определение сил гидростатического давления покоящейся жидкости на плоские стенки.
- •10.Определение сил гидростатического давления покоящейся жидкости на криволинейные стенки.
- •Центр давления.
- •12.Закон Архимеда, плавание тел.
- •13.Два метода описания движения жидкости и газа.
- •14.Основные понятия гидродинамики: линии и трубки тока, траектория частицы, поток жидкости, живое сечение потока, смоченный периметр, гидравлический радиус, гидравлический диаметр, расход.
- •15. Уравнение постоянства расхода (уравнение неразрывности)
- •16.Установившееся и неустановившееся, равномерное и неравномерное, напорное и безнапорное движение жидкости.
- •17.Два режима движения жидкостей и газов. Опыты Рейнольдса, критерий Рейнольдса.
- •18.Особенности ламинарного и турбулентного режимов. Эпюры распределения скоростей.
- •Особенности течения при турбулентном режиме
- •19.Уравнения Эйлера для движущейся среды.
- •Уравнение Бернулли для идеальной жидкости.
- •Геометрическая интерпретация уравнения Бернулли.
- •Энергетическая интерпретация уравнения Бернулли.
- •23.Уравнения Бернулли для реальной жидкости.
- •24.Применение уравнения Бернулли для расчета трубопроводных систем.
- •25.Гидравлические сопротивления, их физическая природа и классификация.
18.Особенности ламинарного и турбулентного режимов. Эпюры распределения скоростей.
При выводе этого уравнения принято, что скорости движения отдельных частиц жидкости в пределах живого сечения одинаковы и равны средней скорости. Однако, если обратиться к потоку реальной жидкости, то необходимо учесть, что скорости в разных точках живого сечения потока не одинаковы, вследствие действия сил трения, за счет чего происходит торможение жидкости у стенок и поле скоростей изменяется (рис. 29).
Рисунок 29 - Распределение скоростей в живом сечении идеальной и реальной жидкости
Ламинарный режим характерен четким выделением отдельных струек.
Распределение скоростей. Касательные напряжения при ламинарном режиме можно выразить из закона вязкого трения Ньютона:
Приравняем два выражения
Из этого выражения, произведя преобразования и интегрирование, получим скорость:
Постоянную интегрирования C,определим из условий нулевой скорости на стенках трубы (U=0 при r=0),откуда
Окончательно закон распределения скоростей имеет вид
;
при r=0;
Эпюра скоростей в живом сечении представляет собой парабалоид вращения. Скорость изменяется от нуля в прилипшем слое у стенок трубы до Vmax на оси.
Особенности течения при турбулентном режиме
Для турбулентного движения характерно перемешивание жидкости, пульсации скоростей и давлений в процессе течения.
Траектории частиц, проходящих через данную неподвижную точку пространства в разные моменты времени, представляют собой кривые линии различной формы несмотря на прямолинейность трубы. Характер линий тока в трубе в данный момент времени также отличается большим разнообразием.
Таким образом, строго говоря, турбулентное течение является неустановившимся течением, т.к. величины скоростей и давлений, а также траектории частиц меняются по времени. Однако его можно рассматривать как установившееся при условии, что осредненные по времени значения давлений и скоростей, а также величина полного расхода потока не меняются с течением времени. Такое течение встречается довольно часто.
Ввиду того, что при турбулентном течении отсутствует слоистость потока и происходит перемешивание жидкости, закон Ньютона в этом случае неприменим. Благодаря перемешиванию жидкости и непрерывному переносу количества движения в поперечном направлении, касательное напряжение на стенке трубы в турбулентном потоке значительно больше, чем в ламинарном.
Распределение скоростей может быть выражено приближенной степенной формулой Альтшуля-Калицуна
.
При турбулентном режиме непосредственно на стенке трубы обычно имеется ламинарный слой. Это весьма тонкий слой жидкости, движение в котором является наиболее замедленным, слоистым и без перемешивания, т.е. ламинарным. Непосредственно за ламинарным слоем располагается тонкий слой жидкости, который представляет переходную зону от ламинарного к турбулентному режиму.
З
а
переходной зоной лежит турбулентное
ядро, в котором частицы перемещаются
по сложным траекториям, вихреобразно
(рис 35).
Рисунок 35 - Структура потока при турбулентном режиме
В пределах ламинарного слоя скорость круто нарастает от нуля на стенке до некоторой конечной величины на границе слоя. Этот участокназывается пограничным ламинарным слоем. Толщина ламинарного слоя 5 может быть выражена следующей зависимостью:
.
Интересно отметить, что число Рейнольдса,
подсчитанное по толщине ламинарного
слоя, скорости \л есть величина постоянная
подобно критическому числу Рейнольдса:
.