- •Контрольные задания для студентов-заочников фм СмолГу
 - •Тема 3 "Основы электричества и магнетизма" примеры решения задач по теме 3
 - •Итак, напряженность равна
 - •Индуктивность соленоида с однослойной обмоткой равна
 - •Следовательно, эдс индукции можно выразить как
 - •Приравнивая правые части этих выражений, получим
 - •Задачи по теме 3 для самостоятельного решения (кратность 10 - по № ф.И.О. Студента в журнале)
 - •Вопросы по теме 3 для рефератов (все каждому студенту)
 - •Тема 4. Физика колебаний
 - •Задачи по теме 4 для самостоятельного решения (кратность 10 - по № ф.И.О. Студента в журнале)
 - •Вопросы по теме 4 для рефератов (все каждому студенту)
 - •Тема 5. Волновые явления
 - •Оптическая разность хода лучей, отклоняющихся от первоначального направления под углом дифракции j, равна
 - •Приравнивая выражения для оптической разности хода лучей, получим
 - •Угол отклонения 4-го максимума от нормали определи из уравнения
 - •Задачи по теме 5 для самостоятельного решения (кратность 10 - по № ф.И.О. Студента в журнале)
 - •Вопросы по теме 5 для рефератов (все каждому студенту)
 - •Тема 6. Корпускулярно-волновые дуализм электромагнитного излучения
 - •Мощность - это энергия, излучаемую за некоторый интервал времени:
 - •Задачи по теме 6 для самостоятельного решения (кратность 10 - по № ф.И.О. Студента в журнале)
 - •Вопросы по теме 6 для рефератов (все каждому студенту)
 - •Тема 7. Элементы квантовой физики атомов, молекул и твердых тел
 - •Задачи по теме 7 для самостоятельного решения (кратность 10 - по № ф.И.О. Студента в журнале)
 - •Вопросы по теме 7 для рефератов (все каждому студенту) ?
 - •Тема 8. Основы квантовой физики атомного ядра и элементарных частиц
 - •Wсв МэВ/нукл Тогда дефект массы равен
 - •Задачи по теме 8 для самостоятельного решения (кратность 10 - по № ф.И.О. Студента в журнале)
 - •Вопросы по теме 8 для рефератов (все каждому студенту)
 - •Тема 3: "Основы электричества и магнетизма"
 - •Диэлектрическая проницаемость (относительная)
 - •Удельное сопротивление (r) и температурный коэффициент сопротивления (a) проводников
 - •Эдс (e) и рабочее напряжение (u)
 - •Электрические свойства металлов1
 - •Свойства полупроводников2
 - •Магнитные свойства магнитно-мягких материалов3
 - •Магнитные свойства магнитно-твёрдых материалов4
 - •Тема 5. Волновые явления
 - •Шкала электромагнитных излучений
 - •Интервалы длин волн видимого диапазона
 - •Характеристики источников света5
 - •Освещенность
 - •Поглощение солнечного излучения поверхностью Земли
 - •Удельная постоянная вращения7
 - •Показатель преломления
 - •Дисперсия показателя преломления (относительно воздуха)
 - •Тема 7. Элементы квантовой физики атомов, молекул и твердых тел
 - •Спектры излучения газов (l, нм)8
 - •Тема 8. Основы квантовой физики атомного ядра и элементарных частиц
 - •Масса покоя (m0) и энергия покоя (w0) элементарных частиц и легких ядер
 - •Свойства радиоактивных изотопов
 - •Предельные дозы облучения9
 - •Реакции синтеза11
 - •Термоядерные реакции во Вселенной12
 - •Реакции деления урана
 - •Характер фундаментальных взаимодействий
 - •Классификация элементарных частиц13 по типу взаимодействия
 - •Характеристики элементарных частиц
 - •Стабильность элементарных частиц14
 - •Свойства кварков
 - •Кварковый состав адронов
 - •Учебная литература основная учебная литература
 - •Дополнительная учебная литература
 
Оптическая разность хода лучей, отклоняющихся от первоначального направления под углом дифракции j, равна
D = d.sinj,
где d – постоянная решетки (период). Период связан числом штрихов на единицу длины решетки соотношением:
d = 1/N0 = l /N.
Максимум интенсивности дифракционного спектра наблюдается в том случае, когда в области фонта падающей на препятствие волны размер препятствия кратен нечетному числу длин полуволн, т.е. в области препятствия укладывается нечетное число зон Френеля. Однако в случае дифракционной решетки таких препятствия (щелей) много, и действие одной щели усиливается. Поэтому условие главных максимумов дифракционной решетки имеет вид:
,
где m = 0, 1, 2,….
Приравнивая выражения для оптической разности хода лучей, получим
d.sinj = m.l,
(l /N) .sinj = m.l. (1)
Наибольшее число главных максимумов наблюдается при sinj = 1:
mmax = l/(Nl).
Сделаем вычисления:
mmax =10 -3/(400 .5,8 .10-7)=4,3 » 4 .
Угол отклонения 4-го максимума от нормали определи из уравнения
sinjmax = mmax .l .N / l ,
sinjmax = 4 .5,8 .10 –7. 400 /10 –3 = 0,928,
jmax » 68,10 .
Ответ: mmax = 4; jmax = 68,10 .
Интенсивность естественного света, прошедшего через поляризатор, уменьшилась в 2,3 раза. Во сколько раз она уменьшится, если за первым поставить второй такой же поляризатор так, что угол между их главным плоскостям (оптическим осями) равен 600 ?
	 
	
	                        
	
     Дано:
 
                                                       Решение:
I0
/I1
= 2,3
a = 600
I0 /I2 - ?
Естественный свет можно представить в виде суперпозиции двух некогерентных волн, поляризованных во взаимно перпендикулярных плоскостях и имеющих одинаковую интенсивность. Поляризатор пропускает колебания волны, параллельные его главной плоскости, и полностью задерживает колебания, перпендикулярные этой плоскости. Из первого поляризатора выходит плоскополяризованный свет интенсивностью
,
                                                     (1)
где k – коэффициент, учитывающий отражение и поглощение света, I0 – интенсивность естественного света.
После прохождения второго поляризатора интенсивность уменьшается не только из-за отражения и поглощения света в нем, но и за счет несовпадения главных плоскостей (оптических осей) поляризаторов. По закону Малюса:
.
Следовательно,
,
              
.
          (2)
Величину (1-k) найдем из (1), воспользовавшись данными в условии задачи:
.
Подставим это выражение в формулу (2) и получим расчетную формулу:
.
Вычислим искомое отношение:
.
Ответ: I0 /I2 = 10,6.
Определить массовую концентрацию сахарного раствора в трубке, если при прохождении света через трубку длиной 20 см плоскость поляризации поворачивается на угол 100. Удельное вращение сахара равно 1,17.10 -2 рад.м2/кг.
Дано: Решение:
l
= 20 см = 0,20 м                   
j = 100
[j0] = 1,17.10 -2 рад.м2/кг
10 = 1,75.10 –2 рад
C - ?
Некоторые вещества, называемы оптически активными, способны поворачивать плоскость поляризации. Это вращение наблюдается, если между скрещенными поляризаторами (угол между их главными плоскостями 900), дающими темное поле зрения, поместить такое вещество – поле зрения анализатора (второго из поляризаторов) просветляется. Тогда при повороте анализатора на некоторый угол j можно вновь получить темное поле зрения. Этот угол есть угол поворота плоскости поляризации света активным веществом. Для оптически активных растворов
j = [j0].C.l,
где l – расстояние, пройденное светом в веществе, [j0] – удельное вращение, численно равное углу поворота плоскости поляризации при прохождении через вещество единичной толщины и концентрации. Следовательно, массовая концентрация сахарного раствора равна:
,
              
Ответ: C = 74,8 кг/м3.
Угол максимальной поляризации при отражении света от кристалла каменной соли равен 57005'. Определить скорость распространения света в кристалле.
Дано: Решение:
 
	 
	a 
	aБ 
	aБ
с
= 3.108
м/с
	n2
	n2 
	Vф
Д. Брюстер обнаружил явление, когда при некотором угле падения aБ естественного света на границу двух изотропных сред отраженный свет оказывается полностью плоскополяризованным. Угол Брюстера определяется выражением:
,
где n21 = n2 /n1 – относительный показатель преломления второй среды относительно первой. Поскольку показатель преломления света в воздухе n1 = 1, то
tgaБ =n2 = с / Vф.
Таким образом, фазовая скорость света в кристалле каменной соли равна
Vф = с / tgaБ ;
Vф = 3.108 / tg57005'=3.108 /1,545 = 2.108 (м/с).
Ответ: Vф= 2.108 м/с.
