
- •Под редакцией профессора Пятибратова а.П. Москва, 2008
- •Содержание
- •Раздел 1. Вычислительные машины и системы.
- •Тема 1. Введение..........................................................................................................................4
- •Тема 2. Принципы построения компьютеров......................................................................12
- •Тема 3. Функциональная и структурная организация эвм............................................38
- •Тема 4. Основные устройства компьютера..........................................................................40
- •Тема 5.Периферийные устройства компьютерных систем…………………………….. 69
- •Тема 6. Программное обеспечение компьютера .................................................................82
- •Тема 7. Компьютерные системы ..........................................................................................103
- •Раздел 2. Компьютерные сети.......................................................117
- •Тема 8. Принципы построения и развития компьютерных сетей.................................117
- •Тема 9. Основные службы и сервисы, обеспечиваемые компьютерными сетями….222
- •Тема10.Перспективы развития вычислительной техники.............................................247
- •Введение.
- •Краткая история и тенденции развития вычислительной техники
- •Автоматизация подготовки и решения задач на эвм
- •Тема 1. Принципы построения компьютеров.
- •1.1. Основные характеристики и классификация компьютеров
- •1.2. Принципы построения современных эвм.
- •1.3. Структурные схемы и взаимодействие устройств компьютера
- •1.4. Кодирование информации
- •1.5. Перспективы развития компьютеров. Элементная база современной вычислительной техники.
- •1.5.1. Альтернативные пути развития элементной базы.
- •Тема 2. Функциональная и структурная организация эвм.
- •2.1. Организация функционирования эвм с магистральной архитектурой
- •2.2. Организация работы эвм при выполнении задания пользователя
- •Тема 3. Основные устройства компьютера.
- •Центральное устройство эвм.
- •3.1.1. Состав, устройство и принцип действия основной памяти
- •6.Рис. 11. Структурная схема озу
- •7.Рис. 12. Регистровая структура магазинного типа
- •3.1.2. Центральный процессор эвм
- •Творческая деятельность компьютерных фирм в 1997 г.
- •3.1.3. Системы визуального отображения информации (видеосистемы)
- •3.2. Внешние запоминающие устройства (взу)
- •3.2.1. Внешние запоминающие устройства (зу) на гибких магнитных дисках
- •11.Рис. 15. Внешний вид дискеты диаметром 3”
- •14.Рис. 16. Функциональная структура диска
- •15.Таблица 6.
- •17.Стандартные форматы нгмд ms dos
- •3.2.2. Накопитель на жестком магнитном диске
- •3.2.3. Стриммер
- •3.2.4. Оптические запоминающие устройства
- •18.Рис. 17. Классификация оптических накопителей информации
- •3.3. Инструментальные средства контроля и диагностики эвм.
- •4. Периферийные устройства эвм
- •4.1. Клавиатура
- •4.2. Принтеры
- •Характеристики монохромных лазерных принтеров фирмы Xerox (персональных: Phaser 3110 – 3400, сетевых: DocuPrint n2125, n2825, n4525 и Phaser 4400, 5400).
- •19.Таблица 5.
- •21.Характеристики цветных лазерных принтеров фирмы Xerox:
- •4.3. Мультимедийные устройства ввода-вывода
- •4.4. Система прерываний эвм
- •Тема 5. Программное обеспечение компьютера
- •5.1. Структура программного обеспечения компьютера
- •5.2. Операционные системы
- •5.3. Системы автоматизации программирования
- •Языки программирования
- •5.4. Пакеты программ
- •5.5. Режимы работы эвм
- •Тема 6. Компьютерные системы.
- •6.1. Классификация компьютерных систем
- •6.2. Архитектура компьютерных систем
- •6.3. Типовые структуры компьютерных систем
- •6.4. Кластеры
- •Раздел 2. Компьютерные сети.
- •Тема 7. Принципы построения и развития компьютерных сетей.
- •7.1. Основные сведения о компьютерных сетях (кс)
- •7.2. Характеристика и особенности лкс
- •7.3. Протоколы и технологии локальных сетей
- •21.3.Таблица 8.
- •7.4. Сетевое коммуникационное оборудование локальных сетей
- •7.5. Программное обеспечение и функционирование лкс
- •7.6. Принципы построения, функции и типы гкс
- •7.7. Сеть Internet. Семейство протоколов tcp/ip
- •7.8. Адресация в ip-сетях
- •25.Класс а
- •7.9. Эталонная модель взаимодействия открытых систем
- •25.1.1.1.1.2Рис. 28. Семиуровневая модель протоколов взаимодействия открытых систем
- •7.10. Управление доступом к передающей среде
- •25.1.1.1.1.3Рис. 29. Классификация ппд нижнего уровня
- •25.1.1.1.1.4Рис. 30. Протокол типа «маркерная шина»
- •7.11. Информационная безопасность в компьютерных сетях
- •27.В случае преднамеренного проникновения в сеть различают следующие виды воздействия на информацию [7; 8]:
- •7.12. Типы сетевой связи и тенденции их развития
- •7.13. Линии связи и их характеристики
- •7.14. Передача дискретных данных на физическом уровне
- •29.5.Манчестер-
- •30.Биполярный
- •7.15. Передача дискретных данных на канальном уровне
- •31.Способ связи без установления логического соединения характеризуется следующим:
- •7.16. Обеспечение достоверности передачи информации
- •7.17. Маршрутизация пакетов в сетях
- •7.18. Способы коммутации в ткс
- •7.20. Сети и технологии isdn и sdh
- •7.21. Сети и технологии атм
- •31.1.1.1.1Рис. 34. Сеть на базе атм
- •7.22. Спутниковые сети связи
- •Тема 8. Основные службы и сервисы, обеспечиваемые компьютерными сетями.
- •8.1. Прикладные сервисы сети Internet.
- •8.2. Клиентское программное обеспечение сети Internet
- •8.3. Функции, характеристики и типовая структура корпоративных компьютерных сетей (ккс)
- •31.1.1.1.1.1Рис. 39. Типовая структура ккс
- •8.4. Программное обеспечение ккс
- •8.5. Сетевое оборудование ккс
- •Тема 9. Перспективы развития вычислительной техники.
- •9.1. Развитие компьютерных сетей и телекоммуникаций.
- •9.1.1. Пути развития компьютерных сетей
- •9.1.2. Перспективы развития телекоммуникаций в России
- •Список рекомендованной литературы
25.1.1.1.1.2Рис. 28. Семиуровневая модель протоколов взаимодействия открытых систем
|
|
АС – N |
||||
Прикладные процессы |
Уровневые протоколы |
Прикладные процессы |
||||
|
7 |
Прикладной |
Управление прикладными процессами |
Уровни процессов взаимодействия |
7 |
Прикладной |
6 |
Представительный |
Управление представлением данных |
6 |
Представительный |
||
5 |
Сеансовый |
Управление сеансами |
5 |
Сеансовый |
||
4 |
Транспортный |
У правление трафиком |
4 |
Транспортный |
||
3 |
Сетевой |
Управление сетью |
3 |
Сетевой |
||
2 |
Канальный |
Управление информационным каналом |
2 |
Канальный |
||
1 |
Физический |
Управление физическим каналом |
1 |
Физический |
||
Передающая среда (коммуникационная подсеть) |
Примитивы делятся на примитивы запроса, индикации, ответа и подтверждения. Уровень, выступающий в роли пользователя сервиса, может активизировать функцию путем выдачи запроса на выполнение действия. Уровень, играющий роль поставщика сервиса, выдает подтверждение о выполнении функции. Иногда выдается запрос на действие, которое должен выполнять уровень на другом (взаимодействующим с первым) компьютере. Примитивы удобно рассматривать как управляющую информацию, которая представлена в кадрах, передаваемых в процессе обмена данными.
Функциональные уровни рассматриваются как составные независимые части процессов взаимодействия АС. Основные функции, реализуемые в рамках уровневых протоколов, заключаются в следующем.
П рикладной уровень – является границей между процессами сети и прикладными (пользовательскими) процессами. На этом уровне выполняются вычислительные, информационно-поисковые и справочные работы, осуществляется логическое преобразование данных пользователя. Прикладной уровень занимается непосредственно поддержкой прикладного процесса пользователя и имеет дело с семантикой данных.
Прикладная программа, которой необходимо выполнить конкретную задачу, посылает конкретные данные на прикладной уровень, где определяется, как следует обрабатывать запрос прикладной программы. Важной функцией прикладного уровня является реализация протоколов электронной почты.
Прикладной уровень содержит несколько так называемых общих элементов прикладного сервиса (ACSE – Application Common Service Elements), представляемым прикладным процессам во всех системах, и специальных элементов прикладного сервиса (SASE – Specific Application Service Elements), которые обеспечивают сервис для конкретных прикладных программ, таких, как программы пересылки файлов и эмуляции терминалов.
На прикладном уровне реализуются функции управления сетями. По мере усложнения сетей вопрос административного управления ими приобретает все большее значение. Это касается прежде всего разработки, совершенствования и стандартизации информационно-управляющих протоколов.
Представительный уровень (уровень представления данных) – отвечает за физическое отображение (представление) информации, он преобразует информацию к виду, который необходим прикладным процессам пользователей, т. е. занимается синтаксисом данных. Выше этого уровня поля данных имеют явную смысловую форму, а ниже его поля рассматриваются как передаточный груз, и их смысловое значение не влияет на обработку.
В основу работы представительного уровня положена единая для всех уровней модели ВОС система обозначений для описания абстрактного синтаксиса – ASCII. Эта система используется для описания структуры файлов, а на прикладном уровне применяется при выполнении операций пересылки файлов при работе с виртуальным терминалом. Одна из важнейших проблем, возникающих при управлении сетями – проблема шифрования данных, решается также с помощью ASCII.
Сеансовый уровень – предназначен для организации и управления сеансами взаимодействия прикладных процессов пользователей. Сеанс создается по запросу процесса пользователя, переданному через прикладной и представительный уровни, и включает: формирование сквозного канала связи между взаимодействующими прикладными процессами, управление обменом информацией между этими процессами, расторжение связи между указанными процессами по завершении обмена. Сеансовый уровень отвечает за режим передачи, т. е. на этом уровне определяется, какой будет передача между двумя прикладными процессами: полудуплексной (процессы будут передавать и принимать данные по очереди) или дуплексной (процессы будут передавать и принимать данные одновременно). На сеансовом уровне также осуществляется управление очередностью передачи данных и их приоритетом, синхронизация отдельных событий.
Транспортный уровень –занимает центральное место в иерархии уровней сети, обеспечивает связь между коммуникационной подсетью и верхними тремя уровнями, отделяет пользователя от физических и функциональных аспектов сети. Главная задача транспортного уровня – управление трафиком в сети. При этом выполняются такие функции, как деление длинных сообщений, поступающих от верхних уровней, на пакеты данных (при передаче информации) и формирование первоначальных сообщений из набора пакетов, полученных через канальный и сетевой уровни, исключая их потери или смещение (при приеме информации). Именно он определяет качество сервиса, которое требуется обеспечить посредством сетевого уровня, включая обнаружение и устранение ошибок.
Транспортный уровень есть граница, ниже которой пакет данных является единицей информации, управляемой сетью. Выше этой границы в качестве единицы информации рассматривается только сообщение. Этот уровень обеспечивает также сквозную отчетность в сети.
Сетевой уровень – главные его функции состоят в маршрутизации и буферизации, он прокладывает путь от отправителя к получателю через всю сеть. Протоколы верхних уровней выдают запросы на передачу пакетов из одной компьютерной системы в другую, а сетевой уровень обеспечивает практическую реализацию механизма этой передачи. Сетевой и транспортный уровни в некоторой степени дублируют друг друга, особенно в плане функций управления потоком данных и контроля ошибок. Главная причина такого дублирования заключается в существовании двух вариантов связи – с установлением соединения и без установления соединения. Эти варианты связи базируются на разных предположениях относительно надежности сети.
В сети с установлением соединения, работающей аналогично обычной телефонной системе, после установления соединения происходит обычный обмен информацией между взаимодействующими абонентами, причем абоненты не обязаны завершать каждое заявление своим именем, именем вызываемого партнера и его адресом, так как считается, что связь надежна и информация доставляется без искажений. В такой сети адрес получателя необходим лишь при установлении соединения, а в самих пакетах он не нужен. Сетевой уровень отвечает за контроль ошибок и управление потоком данных, в его функции входит также сборка пакетов на приемной стороне.
В сети без установления сетевой сервис, наоборот, предполагает, что контроль ошибок и управление потоком осуществляется на транспортном уровне. Поскольку пакеты, принадлежащие одному и тому же сообщению, могут передаваться по разным маршрутам и поступать к адресату в разное время, адрес получателя необходимо указывать в каждом пакете. Указывается также порядковый номер пакета в сообщении, так как соблюдение очередности приема пакетов не гарантируется.
Канальный уровень – определяет правила совместного использования физического уровня узлами связи. Его главные функции: управление доступом к передающей среде (т. е. реализация выбранного метода доступа к общесетевым ресурсам) и управление передачей данных по информационному каналу, включающее генерацию стартового сигнала и организацию начала передачи информации, передачу информации по каналу, проверку получаемой информации и исправление ошибок, отключение канала при его неисправности и восстановление передачи после ремонта, генерацию сигнала окончания передачи и перевод канала в пассивное состояние. В обязанности канального уровня входит также прием пакетов, поступающих с сетевого уровня, и подготовка пакетов к передаче, укладывая их в кадры, которые являются контейнерами для пакетов. Принимая информацию с физического уровня в виде потока битов, канальный уровень должен определять, где начинается и где заканчивается передаваемый блок, и обнаруживать ошибки передачи. В случае обнаружения ошибки осуществляется инициализация соответствующих действий по восстановлению потерянных, искаженных и даже дублированных действий (характер этих действий определяется реализуемым методом защиты от ошибок).
Канальный и физический уровни определяют характеристики физического канала и процедуру передачи по нему кадров.
Физический уровень – непосредственно связан с каналом передачи данных, обеспечивает физический путь для электрических сигналов, несущих информацию. На этом уровне осуществляется установление, поддержка и расторжение соединения с физическим каналом, определение электрических и функциональных параметров взаимодействия компьютера с коммуникационной подсетью.
Физический уровень наименее противоречивый, его функции реализованы только аппаратными средствами, причем на аппаратуру разработаны и вошли в обиход международные стандарты.
Для физического уровня определен подробный список рекомендованных к использованию соединений. Он может обеспечивать как асинхронный, так и синхронный режимы передачи информации. На физическом уровне определяются такие важнейшие компоненты сети, как тип коаксиального кабеля, витой пары, волоконно-оптического кабеля. На этом же уровне определяется схема кодирования для представления двоичных значений при передаче по каналу связи и обеспечения синхронизации сигналов (синхронизации работы генераторов тактовых импульсов передающей и приемной стороны).
Совершенствование эталонной модели ВОС для ЛКС привело к декомпозиции канального и физического уровней. Канальный уровень разделен на два подуровня: подуровень управления логическим каналом (передача кадров между рабочими станциями, включая исправление ошибок, диагностика работоспособности узлов сети) и подуровень управления доступом к передающей среде (реализация алгоритма доступа к среде и адресация станций сети). Физический уровень делится на три подуровня: передачи физических сигналов, интерфейса с устройством доступа и подключения к физической среде.
В ЛКС процедуры и протоколы управления на нижних уровнях модели ВОС не отличаются сложностью, поэтому эти уровни реализуются в основном техническими средствами, называемыми станциями локальной сети (СЛС) и адаптерами. По существу, адаптер вместе с физическим каналом образует информационный моноканал, к которому подключаются системы сети, выступающие в качестве абонентов моноканала.