Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпора математика(готовая. все вопросы).docx
Скачиваний:
25
Добавлен:
24.09.2019
Размер:
638.06 Кб
Скачать

7. Комплексное число

КомплЕксные числа (устар. Мнимые числа), — расширение мн-ва вещественных чисел, обычно обозначается . Любое комплексное число может быть представлено как формальная сумма , где и — вещественные числа, — мнимая единица.

Комплексные числа образуют алгебраически замкнутое поле — это означает, что многочлен степени с комплексными коэффициентами имеет ровно комплексных корней (основная теорема алгебры). Это одна из главных причин широкого применения комплексных чисел в математических исследованиях. Кроме того, применение комплексных чисел позволяет удобно и компактно сформулировать многие математические модели, применяемые в математической физике и в естественных науках — электротехнике, гидродинамике, картографии, квантовой механике, теории колебаний и многих других.

Определения

Поле комплексных чисел можно понимать как расширение поля вещественных чисел, в котором многочлен имеет корень. Следующие две элементарные модели показывают, что непротиворечивое построение такой системы чисел возможно. Оба приведенных определения приводят к изоморфным расширениям поля вещественных чисел , как и любые другие конструкции поля разложения многочлена .

Стандартная модель

Комплексное число  можно определить как упорядоченную пару вещественных чисел . Введём операции сложения и умножения таких пар следующим образом:

Вещественные числа являются в этой модели подмножеством мн-ва комплексных чисел и представлены парами вида , причём операции с такими парами согласованы с обычными сложением и умножением вещественных чисел. Ноль представляется парой единица — а мнимая единица — На множестве комплексных чисел ноль и единица обладают теми же свойствами, что и на множестве вещественных, а квадрат мнимой единицы, как легко проверить, равен , то есть

Несложно показать, что определённые выше операции имеют те же свойства, что и аналогичные операции с вещественными числами. Исключением являются только свойства, связанные с отношением порядка (больше-меньше), потому что расширить порядок вещественных чисел, включив в него все комплексные числа так, чтобы операции по-прежнему были согласованы с порядком, невозможно.

Матричная модель

Комплексные числа можно также определить как семейство вещественных матриц вида

с обычным матричным сложением и умножением. Действительной единице будет соответствовать

мнимой единице —

Действия над комплексными числами

  • Сравнение

означает, что и (два комплексных числа равны между собой тогда и только тогда, когда равны их действительные и мнимые части).

  • Сложение

  • Вычитание

  • Умножение

  • Деление

Геометрическая модель

Геометрическое представление комплексного числа

Рассмотрим плоскость с прямоугольной системой координат. Каждому комплексному числу сопоставим точку плоскости с координатами (а также радиус-вектор, соединяющий начало координат с этой точкой). Такая плоскость называется комплексной. Вещественные числа на ней занимают горизонтальную ось, мнимая единица изображается единицей на вертикальной оси; по этой причине горизонтальная и вертикальная оси называются соответственно вещественной и мнимой осями.

Часто бывает удобно рассматривать на комплексной плоскости также полярную систему координат, в которой координатами точки являются расстояние до начала координат (модуль) и угол радиус-вектора точки (показанного синей стрелкой на рисунке) с горизонтальной осью (аргумент). Подробнее см. ниже.

В этом наглядном представлении сумма комплексных чисел соответствует векторной сумме соответствующих радиус-векторов. При перемножении комплексных чисел их модули перемножаются, а аргументы складываются. Если модуль второго сомножителя равен 1, то умножение на него геометрически означает поворот радиус-вектора первого числа на угол, равный аргументу второго числа. Этот факт объясняет широкое использование комплексного представления в теории колебаний, где вместо терминов «модуль» и «аргумент» используются термины «амплитуда» и «фаза».

Геометрическая модель комплексных чисел широко используется в планиметрии: многие планиметрические теоремы можно доказать как некоторые комплексные тождества. Часто этот метод даёт наиболее простое док-во.

Связанные определения

Модуль, аргумент, вещественная и мнимая части

Пусть  — комплексное число, где и  — вещественные числа. Числа или и или называются соответственно вещественной и мнимой (аналогично англ. real, imaginary) частями .

  • Если , то называется мнимым или чисто мнимым числом.

  • Если , то является действительным (вещественным) числом.

Модуль и аргумент

Модулем (абсолютной величиной) комплексного числа называется длина радиус-вектора соответствующей точки комплексной плоскости (или, что то же, расстояние между точкой комплексной плоскости, соответствующей этому числу, и началом координат).

Модуль комплексного числа обозначается и определяется выражением . Часто обозначается буквами или . Если является вещественным числом, то совпадает с абсолютной величиной этого вещественного числа.

Переход к сопряжённому числу можно рассматривать как одноместную операцию; перечислим её свойства.

  • (сопряжённое к сопряжённому есть исходное).