Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВСЕ СОБРАННЫЕ ШПОРЫ.docx
Скачиваний:
76
Добавлен:
23.09.2019
Размер:
837.51 Кб
Скачать

19.Дифракция Френеля на круглом отверстии и диске.

На круглом отверстии:

Сферическая волна, распространяющаяся из точечного источника монохроматического света S, встречает на своем пути экран с круглым отверстием, диаметр которого d=BC. Пусть Ф - фронт волны, который является частью поверхности сферы. Разобьем поверхность фронта на зоны Френеля так, что волны от соседних зон приходят в точку наблюдения М в противофазе. Тогда амплитуда результирующей волны в точке М.

А=А1-А2+А3-А4+-Аm, где Аi - амплитуда волны, пришедшей от i-ой зоны Френеля. Перед Аm берется знак плюс, если m - нечетное, и минус, если m (число зон Френеля)- четное.

На диске: пусть диск перекрывает 1-ое m зон, тогда амплитуда результирующей волны: А=Аm+1m+2m+3+…=Аm+1/2 и тогда, на экране всегда в центре будет наблюдаться максимум светлое пятно, вверх и вниз будут располагаться менее интенсивные максимумы более высоких порядков.

20.Дифракция Фраунгофера на бесконечно длинной щели.  Дифракция Фраунгофера, имеющая большое практическое значение, наблюдается в том случае, когда источник света и точка наблюдения бесконечно удалены от препятствия, вызвавшего дифракцию. Чтобы этот тип дифракции осуществить, достаточно точечный источник света поместить в фокусе собирающей линзы, а дифракционную картину исследовать в фокальной плоскости второй собирающей линзы, установленной за препятствием. Рассмотрим дифракцию Фраунгофера от бесконечно длинной. Пусть плоская монохроматическая световая волна падает нормально плоскости узкой щели шириной а .Оптическая разность хода между крайними лучами , идущими от щели в произвольном направлении 

 где F — основание перпендикуляра, опущенного из точки на луч .

разобьем эту пов-ть на зоны Френеля,тогда на отрезок FN будет укладыв. число зон Френеля .Если открыто четное число зон Френ.,то волны от этих зон компенсируют друг друга и в выбранной точке будет наблюдаться минимум.

. - это условие минимума на ДК.m – порядок минимума.

Если открывается нечетное число зон Френ. в данной точке будет наблюд. максимум. Условие максимума: .

Если , то это сообветсявует одной открытой зоне Френ.В центре будут наблюд. главный максимум нулевого порядка.

21Одномерная дифракционная решетка представляет собой систему большого числа N одинаковых по ширине b и параллельных друг другу щелей, разделенных одинаковыми по ширине а промежутками. Величина d=a+b называется постоянной (периодом) дифракционной решетки.

22. Дифракция рентгеновских излучений. Формула Вульфа-Брэнггов. Рассеяние.

Рентгеновское излучение- это электромагнитные волны с длинной волны 10-12-10-8.Традиционо получают рентгеновское излучение с помощью рентгеновской трубки. Состоит из стекляной колбы из которой откачен воздух. Имеет 2 электрода,анод и катод.

В рентгеновских трубках электроны, испущенные катодом, ускоряются под действием разности электрических потенциалов между анодом и катодом и ударяются об анод, где происходит их резкое торможение. При этом за счёт тормозного излучения происходит генерация излучения рентгеновского диапазона, и одновременно выбиваются электроны из внутренних электронных оболочек атомов анода. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с характерным для материала анода спектром энергий

Формула Вульфа- Брэггов.

пучок монохроматических рентгеновских лучей, падающих под углом θ на семейство параллельных атомных плоскостей, S – пучок дифрагированных лучей. Дифрагированные лучи усиливают друг друга, если согласно условию интерференции разность хода Δ между ними равна целому числу длин волн, т.е.

Δ = nλ (n = 1, 2, 3, …).

разность хода между падающим и дифрагированным лучами равна

Δ = РО + OQ = 2РО = 2dsinθ.

Чтобы волны, рассеянные двумя соседними плоскими сетками, дали максимум интенсивности, необходимо выполнение основного закона дифракции рентгеновских лучей в кристаллах:

2dsinθ = nλ (n = 1, 2, 3, …). (1.1)