
- •Общая проблема обеспечения информационной безопасности. Причины необходимости защиты информации.
- •Управление ключами
- •Блочные шифры. Режимы работы блочных шифров.
- •Основные угрозы безопасности автоматизированной системы обработки информации.
- •Виды умышленных угроз безопасности информации
- •Криптосистемы с открытым ключом. Принцип действия, достоинства и недостатки.
- •Цифровая подпись. Основные понятия. Примеры систем эцп.
- •Фрагментарный и комплексный подходы к защите информации. Их достоинства и недостатки.
- •Проблема доступа к информации. Санкционированный и несанкционированный (нсд) доступ. Два подхода к управлению доступом.
- •Российский стандарт шифрования гост 28147-89.
- •Вредноносные программы и способы защиты от них.
- •2. Комбинированные методы идентификации, требующие, помимо знания пароля, наличие карточки (token) — специального устройства, подтверждающего подлинность субъекта.
- •Симметричные криптосистемы. Достоинства и недостатки. Примеры.
- •Функции криптосистем
- •Протоколы с криптосистемой dh (Диффи, Хэллман)
- •Способы защиты речевого сигнала.
Цифровая подпись. Основные понятия. Примеры систем эцп.
Схема электронной подписи обычно включает в себя:
алгоритм генерации ключевых пар пользователя;
функцию вычисления подписи;
функцию проверки подписи.
Функция вычисления подписи на основе документа и секретного ключа пользователя вычисляет собственно подпись. В зависимости от алгоритма функция вычисления подписи может быть детерминированной или вероятностной. Детерминированные функции всегда вычисляют одинаковую подпись по одинаковым входным данным. Вероятностные функции вносят в подпись элемент случайности, что усиливает криптостойкость алгоритмов ЭЦП. Однако, для вероятностных схем необходим надёжный источник случайности (либо аппаратный генератор шума, либо криптографически надёжный генератор псевдослучайных бит), что усложняет реализацию. В настоящее время детерминированые схемы практически не используются. Даже в изначально детерминированные алгоритмы сейчас внесены модификации, превращающие их в вероятностные.
Функция проверки подписи проверяет, соответствует ли данная подпись данному документу и открытому ключу пользователя. Открытый ключ пользователя доступен всем, так что любой может проверить подпись под данным документом.
Поскольку подписываемые документы — переменной (и достаточно большой) длины, в схемах ЭЦП зачастую подпись ставится не на сам документ, а на его хэш. Для вычисления хэша используются криптографические хэш-функции, что гарантирует выявление изменений документа при проверке подписи. Хэш-функции не являются частью алгоритма ЭЦП, поэтому в схеме может быть использована любая надёжная хэш-функция.
Алгоритмы ЭЦП делятся на два больших класса: обычные цифровые подписи и цифровые подписи с восстановлением документа. Обычные цифровые подписи необходимо пристыковывать к подписываемому документу. К этому классу относятся, например, алгоритмы, основанные на эллиптических кривых (ECDSA, ГОСТ Р 34.10-2001, ДСТУ 4145-2002). Цифровые подписи с восстановлением документа содержат в себе подписываемый документ: в процессе проверки подписи автоматически вычисляется и тело документа. К этому классу относится один из самых популярных алгоритмов - RSA.
Следует различать электронную цифровую подпись и код аутентичности сообщения, несмотря на схожесть решаемых задач (обеспечение целостности документа и неотказуемости авторства). Алгоритмы ЭЦП относятся к классу асимметричных алгоритмов, в то время как коды аутентичности вычисляются по симметричным схемам.
Алгоритмы ЭЦП
Американские стандарты электронной цифровой подписи: DSA, ECDSA
Российские стандарты электронной цифровой подписи: ГОСТ Р 34.10-94 (в настоящее время не действует), ГОСТ Р 34.10-2001
Украинский стандарт электронной цифровой подписи: ДСТУ 4145-2002
Стандарт PKCS#1 описывает, в частности, схему электронной цифровой подписи на основе алгоритма RSA
Цифровая подпись обеспечивает:
Удостоверение источника документа. В зависимости от деталей определения документа могут быть подписаны такие поля, как «автор», «внесённые изменения», «метка времени» и т. д.
Защиту от изменений документа. При любом случайном или преднамеренном изменении документа (или подписи) изменится хэш, следовательно, подпись станет недействительной.
Невозможность отказа от авторства. Так как создать корректную подпись можно лишь, зная закрытый ключ, а он известен только владельцу, то владелец не может отказаться от своей подписи под документом.
Технологии цифровых подписей
Как оказалось, теория асимметричного шифрования позволяет очень красиво решать еще одну проблему информационной безопасности – проверку подлинности автора сообщения. Для решения этой проблемы с помощью симметричной криптографии была разработана очень трудоемкая и сложная схема. В то же время с помощью, например, того же алгоритма RSA создать алгоритм проверки подлинности автора и неизменности сообщения чрезвычайно просто.
Предположим, что нам нужно передать какой-либо текст, не обязательно секретный, но важно то, чтобы в него при передаче по незащищенному каналу не были внесены изменения. К таким текстам обычно относятся различные распоряжения, справки, и тому подобная документация, не представляющая секрета. Вычислим от нашего текста какую-либо хеш-функцию – это будет число, которое более или менее уникально характеризует данный текст.
В принципе, можно найти другой текст, который дает то же самое значение хеш-функции, но изменить в нашем тексте десять-двадцать байт так, чтобы текст остался полностью осмысленным, да еще и изменился в выгодную нам сторону (например, уменьшил сумму к оплате в два раза) – чрезвычайно сложно. Именно для устранения этой возможности хеш-функции создают такими же сложными как и криптоалгоритмы – если текст с таким же значением хеш-функции можно будет подобрать только методом полного перебора, а множество значений будет составлять как и для блочных шифров 232–2128 возможных вариантов, то для поиска подобного текста злоумышленнику "потребуются" те же самые миллионы лет.
Таким образом, если мы сможем передать получателю защищенным от изменения методом хеш-сумму от пересылаемого текста, то у него всегда будет возможность самостоятельно вычислить хеш-функцию от текста уже на приемной стороне и сверить ее с присланной нами. Если хотя бы один бит в вычисленной им самостоятельно контрольной сумме текста не совпадет с соответствующим битом в полученном от нас хеш-значении, значит, текст по ходу пересылки подвергся несанкционированному изменению.
Представим теперь готовую к передаче хеш-сумму в виде нескольких k-битных блоков hi, где k – это размер сообщений по алгоритму RSA в предыдущем параграфе. Вычислим над каждым блоком значение si=((hi)d)mod n, где d – это тот самый закрытый ключ отправителя. Теперь сообщение, состоящее из блоков si можно "спокойно" передавать по сети. Никакой опасности по известным hi и si найти Ваш секретный ключ нет – это настолько же сложная задача, как и задача "логарифмирования в конечном поле". А вот любой получатель сообщения может легко прочесть исходное значение hi, выполнив операцию ((si)e)mod n = ((hi)d*e)mod n = hi – Ваш открытый ключ (e,n) есть у всех, а то, что возведение любого числа в степень (e*d) по модулю n дает исходное число, мы доказали в прошлом параграфе. При этом никто другой, кроме Вас, не зная Вашего закрытого ключа d не может, изменив текст, а следовательно, и хеш-сумму, вычислить такие s'i, чтобы при их возведении в степень e получилась хеш-сумма h'i, совпадающая с хеш-суммой фальсифицированного текста.
Таким образом, манипуляции с хеш-суммой текста представляют из себя "асимметричное шифрование наоборот" : при отправке используется закрытый ключ отправителя, а для проверки сообщения – открытый ключ отправителя. Подобная технология получила название "электронная подпись". Информацией, которая уникально идентифицирует отправителя (его виртуальной подписью), является закрытый ключ d. Ни один человек, не владеющий этой информацией, не может создать такую пару (текст,si), что описанный выше алгоритм проверки дал бы положительный результат.
Подобный обмен местами открытого и закрытого ключей для создания из процедуры асимметричного шифрования алгоритма электронной подписи возможен только в тех системах, где выполняется свойство коммутативности ключей. Для других асимметричных систем алгоритм электронной подписи либо значительно отличается от базового, либо вообще не реализуем.