- •30. Природа света.
- •31. Световой поток. Освещенность.
- •§ 70. Сила света и освещенность. Полный световой поток характеризует излучение, которое распространяется от
- •32. Законы освещенности.
- •33. Яркость источников и освещенных поверхностей.
- •34. Световые измерения и измерительные приборы.
- •35. Прямолинейное распространение света и световые лучи.
- •36. Законы отражения и преломления света. Понятие дисперсии.
- •37. Интерференция света. Дифракция света.
- •127. Определение длины световой волны с помощью колец Ньютона.
- •§ 130. Законы отражения и преломления света на основе принципа Гюйгенса. Пусть на границу раздела двух сред аb (рис. 273) падает параллельный пучок лучей, образуя
- •§ 136. Дифракционная решетка как спектральный прибор.
- •38. Поляризация света.
- •39. Цвет.
- •§ 164. Спектральный состав света различных источников.
- •40. Линзы. Преломление изображения в линзах.
- •41. Формула линзы. Действительное и мнимое изображение.
- •42. Плоские и сферические зеркала.
- •43. Построение изображения в зеркалах.
- •44. Увеличение при изображении объектов в сферических зеркалах и линзах.
- •45. Проекционные оптические приборы.
- •46. Фотоаппарат.
- •47. Глаз как оптическая система. Лупа.
- •48. Микроскоп.
- •49. Разрешающая способность и увеличение оптических приборов.
- •50. Погрешности оптических приборов.
- •§ 102. Увеличение системы. Найдем теперь формулы для линейного увеличения системы. Из подобия треугольников s'1s'2f' и h'q'f' (рис. 226) имеем
- •§ 107. Ограничение пучков в оптических системах. Изучая оптические системы, мы до сих пор оставляли в стороне
- •51. Различные виды микроскопов, используемые в судебной экспертизе.
- •52. Оптическая световая микроскопия и ее использование для исследования объектов судебной экспертизы
- •53. Люминесцентная микроскопия и ее использование для исследования объектов судебной экспертизы.
- •54. Электронная микроскопия, ее виды и использование ее для исследования объектов судебной экспертизы.
- •55. Понятие электромагнитных волн.
- •56. Источники электромагнитных волн.
- •57. Способы исследования электромагнитных волн различной длины.
- •58. Шкала электромагнитных волн.
- •59. Видимая и невидимая зоны шкалы электромагнитных волн. Свойства электромагнитного излучения в различных областях спектра
- •60. Ультрафиолетовая, инфракрасная микроскопия и использование ее для исследования объектов судебной экспертизы.
- •61. Дисперсия и цвет тел.
- •62. Понятие спектра. Типы спектров, используемых в судебной экспертизе.
- •§ 174. Происхождение спектров различных типов. Исследование показало, что тип спектра определяется характером светящегося объекта.
- •63. Дисперсия показателя преломления различных материалов. Коэффициенты поглощения, отражения и пропускания.
- •64. Спектральный состав света различных источников. Спектры и спектральные закономерности.
- •65. Спектральные аппараты.
- •66. Действия света на вещество. Фотоэлектрический эффект.
65. Спектральные аппараты.
Спектральные аппараты. Свечение тел тесно связано с процессами, происходящими в атомах и молекулах. Поэтому исследование свечения явилось важным средством для уяснения строения молекул и атомов.
Существенные различия в характере свечения устанавливаются при изучении спектров светящихся тел. Для получения спектров используется дифракционная решетка или
Рис.321. Схема устройства спектрографа: S — щель, L1 — объектив коллиматора, Р — призма, L2 — объектив камеры, MN — матовое стекло или фотопластинка
чаще призма. Принцип получения спектра при помощи призмы изложен в § 160. Для того чтобы спектр был возможно более четким, т. е. чтобы различные спектральные области хорошо разделялись между собой, спектральному аппарату придается более сложное, чем указано в § 160, устройство, схематически изображенное на рис. 321.
Левая часть аппарата — коллиматор SL1 — состоит из узкой щели S, расположенной в главной фокальной плоскости объектива L1; благодаря этому свет, упавший на щель, выходит из коллиматора параллельным пучком и падает на призму. Из призмы он также выходит
406
параллельным пучком. Но так как лучи разной длины волны (разного цвета) отклоняются призмой на разные углы (дисперсия), то из призмы выходят параллельные пучки разного направления; благодаря этому свет собирается вторым объективом L2 в различных точках его фокальной плоскости MN. В этой плоскости получаются, следовательно, изображения щели S, но так, что изображения, соответствующие разным длинам волн, приходятся на разные места плоскости MN. Расположив в плоскости MN матовое стекло или фотографическую пластинку, мы получим на ней четкое изображение спектра. Если свет, падающий на щель S, представляет собой смесь нескольких монохроматических пучков, то спектр имеет вид отдельных изображений щели в разных длинах волн, т. е. имеет вид отдельных узких линий, разделенных темными промежутками. Если на щель падает белый свет, то все отдельные изображения щели сливаются в цветную полосу.
Аппараты, в которых спектр изображается на фотопластинке, носят название спектрографов. Иногда вместо камеры L2MN помещают зрительную трубу и наблюдают спектр глазом. В этих случаях спектральный аппарат принято называть спектроскопом. Призма изготовляется из стекла, обладающего значительной дисперсией, либо из кварца, флюорита или каменной соли, если спектрограф предназначен для работы в ультрафиолетовой или инфракрасной частях спектра. Из соответствующих материалов делают и объективы.
§ 173. Типы спектров испускания. Направив на щель спектрографа свет от солнца, лампы накаливания, свечи и т. д., мы получим спектры, имеющие вид сплошной полоски, в которой представлены все длины волн, идущие непрерывной чередой. Такие спектры называются сплошными или непрерывными.
Иной вид имеет спектр, если в качестве источника света использовать светящиеся газы. Направим, например, на спектрограф свет газоразрядной лампы, в которой светится пар ртути. Наблюдаемый спектр имеет вид, изображенный на рис. 322. Он состоит из отдельных резких линий, представляющих собой изображение щели спектрографа в отдельных длинах волн. Каждая линия представляет по существу узкий спектральный интервал, охватывающий некоторый набор длин волн; но интервал этот так узок, что его можно практически считать соответст-
Рис. 322. Спектр пара ртути (длины волн — в ангстремах)
Рис. 323. Небольшой участок спектра железа (от 4143 до 4236 Å)
вующим одной определенной длине волны. Приведенный на рис. 322 в качестве примера спектр ртути характерен для свечения газов или паров. Такие спектры принято называть линейчатыми. Разнообразные пары или газы могут давать спектры, отличающиеся положением спектральных линий (т. е. их длиной волны), а также числом их и распределением по спектру. Спектр пара ртути сравнительно беден линиями; наоборот, в спектре пара железа, например, насчитывается несколько тысяч отдельных спектральных линий (рис. 323), распределенных по видимой и ультрафиолетовой областям спектра.
Рис. 324. Спектр пара иода
При изучении спектров паров или газов наблюдаются также спектры, состоящие из отдельных полос, разделенных темными промежутками. Некоторые из этих полос при более тщательном исследовании оказываются состоящими из очень большого числа отдельных линий, другие же представляют собой действительно сплошные полоски. Такого типа спектры принято называть полосатыми. Рис. 324 дает пример такого спектра, наблюдаемого при свечении пара иода.