
- •Потенциальная энергия. Закон сохранения энергии.
- •Закон сохранения энергии.
- •Момент инерции. Кинетическая энергия вращения тела Момент инерции
- •Теорема Гюйгенса-Штейнера
- •Момент силы. Основной закон вращательного движения.
- •Момент импульса и закон его сохранения
- •Основные положения молекулярно -кинетической теории (mkt)
- •Модель идеального газа. Уравнение Менделеева - Клапейрона.
- •Обратимые и необратимые процессы.
- •Распределение молекул по скоростям (закон Максвелла).
- •17.Опытная проверка закона Максвелла.
- •Барометрическая формула Распределение Больцмана.
- •Явления переноса. Диффузия. Закон Фика. Коэффициент диффузии.
- •Теплопроводность. Закон Фурье. Коэффициент теплопроводности
- •Внутреннее трение. Закон Ньютона. Коэффициент вязкости.
- •Свойства жидкостей. Поверхностное натяжение в жидкостях.
- •Капиллярные явления.
- •Внутренняя энергия тел. Количество теплоты.
- •28)Адиабатический процесс. Уравнение Пуассона.
- •29)Классическая теория теплоемкости и ее недостатки. Теплоемкость
- •30) Круговые процессы. Цикл Карно. Кпд цикла Карно.
- •31)Второй закон термодинамики. Энтропия и её свойства. Третий закон термодинамики.
- •Следствия Недостижимость абсолютного нуля температур
- •Поведение термодинамических коэффициентов
- •32)Энтропия и вероятность.
- •33)Взаимодействие электрических зарядов. Закон Кулона.
- •34)Электрическое поле. Напряженность поля. Электрическое смещение. Теорема Гаусса.
- •Сила, с которой действует электромагнитное поле на заряженные частицы
- •Уравнения Максвелла
- •35)Работа сил электрического поля. Потенциал и разность потенциалов.
- •Взаимодействие электрических зарядов. Закон Кулона. Системы зарядов.
- •Электрическое поле. Напряженность поля. Электрическое смещение. Теорема Гаусса.
- •Работа сил электрического поля. Потенциал и разность потенциалов. Циркуляция вектора напряженности электростатического поля
- •Связь между потенциалом и напряженностью. Потенциал заряженного проводника.
- •Электроемкость уединенного проводника. Конденсаторы. Электрическая энергия заряженного проводника и диэлектрического поля. Электрическая емкость уединенного проводника
- •Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля
- •Сила взаимодействия между обкладками плоского конденсатора.
- •Диэлектрики в электрическом поле. Поляризуемость диэлектриков. Диэлектрическая проницаемость среды.
- •Электрическое поле в проводниках. Понятие о токе проводимости, плотность тока и сила тока. Сторонние силы.
- •Сторонние силы. Электродвижущая сила и напряжение
- •41. Дифференциальная форма закона Ома. Правила Кирхгофа.
- •42. Закон Био-Савара-Лапласа и его приложения.
- •43. Движение заряженных частиц (токов) в магнитном поле. Формула Лоренца для силы, действующей на заряд со стороны электрического и магнитного полей. Действие магнитного поля на движущийся заряд
- •Движение заряженных частиц в магнитном поле
- •44. Электромагнитная индукция. Самоиндукция.
- •45. Энергия магнитного поля тока
- •46. Принцип Гюйгенса. Представление о световых лучах. Законы отражения и преломления света. Полное внутреннее отражение.
- •47. Интерференция света. Условия максимума и минимума интенсивности света при наложении когерентных волн. Интерференция от двух источников.
- •Интерференция света
- •48. Метод зон Френеля. Дифракция Френеля от круглого отверстия.
- •Дифракция Фраунгофера от щели. Дифракция Фраунгофера на одной щели
- •Дифракция от дифракционной решетки. Дифракция Фраунгофера на дифракционной решетке
- •Пространственная дифракционная решетка. Формула Вульфа-Брегга. Пространственная решетка. Рассеяние света
- •§ 182. Дифракция на пространственной решетке. Формула Вульфа — Брэггов
- •Дисперсия света. Дисперсия света
- •Поглощение света. Рассеяние света.
- •Рассеяние света.
- •54.Поляризация света. Поляризаторы. Поляризация света при отражении от поверхности сред. Закон Брюстера. Естественный и поляризованный свет
- •§ 191. Поляризация света при отражении и преломлении на границе двух диэлектриков
- •55. Поляризация света. Двойное лучепреломление. Призма Николя. Двойное лучепреломление
- •Поляризационные призмы и поляроиды
- •Вращение плоскости поляризации. Вращение плоскости поляризации
- •57.Фотоэффект. Законы внешнего фотоэффекта
- •Модель атома по Бору. Постулаты Бора.
- •Постулаты Бора
- •Волны де Бройля.
- •Соотношение неопределенностей Гейзенберга.
- •Энергетические уровни атома водорода, переходы между уровнями.
- •Законы взаимопревращений частиц, ядерные реакции, дефект масс. Дефект массы
- •Ядерные реакции и их основные типы
- •Строение ядер, ядерные силы, устойчивые и неустойчивые ядра. Размер, состав и заряд атомного ядра
- •Ядерные силы
- •Правила смещения
- •Гамма-излучение и его свойства
Законы взаимопревращений частиц, ядерные реакции, дефект масс. Дефект массы
Величина
называется дефектом массы ядра. На эту величину уменьшается масса всех нуклонов при образовании из них атомного ядра. Здесь тp, тn, тя — соответственно массы протона, нейтрона и ядра.
Ядерные реакции и их основные типы
Ядерные реакции — это превращения атомных ядер при взаимодействии с элементарными частицами (в том числе и с -квантами) или друг с другом. Наиболее распространенным видом ядерной реакции является реакция, записываемая символически следующим образом:
где Х и Y — исходное и конечное ядра, а и b — бомбардирующая и испускаемая (или испускаемые) в ядерной реакции частицы.
В отличие от радиоактивного распада, который протекает всегда с выделением энергии, ядерные реакции могут быть как экзотермическими (с выделением энергии), так и эндотермическими (с поглощением энергии).
Важную роль в объяснении механизма многих ядерных реакций сыграло предположение Н. Бора (1936) о том, что ядерные реакции протекают в две стадии по следующей схеме:
(262.1)
Первая стадия — это захват ядром Х частицы а, приблизившейся к нему на расстояние действия ядерных сил (примерно 210–15 м), и образование промежуточного ядра С, называемого составным (или компаунд-ядром). Энергия влетевшей в ядро частицы быстро распределяется между нуклонами составного ядра, в результате чего оно оказывается в возбужденном состоянии. При столкновении нуклонов составного ядра один из нуклонов (или их комбинация, например дейтрон — ядро тяжелого изотопа водорода — дейтерия, содержащее один протон и один нейтрон) или -частица может получить энергию, достаточную для вылета из ядра. В результате возможна вторая стадия ядерной реакции — распад составного ядра на ядро Y и частицу b.
В ядерной физике вводится характерное ядерное время — время, необходимое для пролета частицей расстояния порядка величины, равной диаметру ядра (d10–15 м).
Если испущенная частица тождественна с захваченной (bа), то схема (262.1) описывает рассеяние частицы: упругое — при Еb=Еа, неупругое — при ЕbЕа. Если же испущенная частица не тождественна с захваченной (bа), то имеем дело с ядерной реакцией в прямом смысле слова.
Некоторые реакции протекают без образования составного ядра, они называются прямыми ядерными взаимодействиями (например, реакции, вызываемые быстрыми нуклонами и дейтронами).
Ядерные реакции классифицируются по следующим признакам:
1) по роду участвующих в них частиц (реакции под действием нейтронов; реакции под действием заряженных частиц (например, протонов, дейтронов, -частиц); реакции под действием -квантов)
2) по энергии вызывающих их частиц (реакции при малых энергиях, происходящие в основном с участием нейтронов; реакции при средних энергиях (до нескольких, происходящие с участием -квантов и заряженных частиц (протоны, -частицы); реакции при высоких энергиях , приводящие к рождению отсутствующих в свободном состоянии элементарных )
3) по роду участвующих в них ядер (реакции на легких ядрах (А< 50); реакции на средних ядрах (50<А< 100); реакции на тяжелых ядрах (А> 100);
4) по характеру происходящих ядерных превращений (реакции с испусканием нейтронов; реакции с испусканием заряженных частиц; реакции захвата).
Первая в истории ядерная реакция осуществлена Э. Резерфордом (1919) при бомбардировке ядра азота -частицами, испускаемыми радиоактивным источником: