
- •Потенциальная энергия. Закон сохранения энергии.
- •Закон сохранения энергии.
- •Момент инерции. Кинетическая энергия вращения тела Момент инерции
- •Теорема Гюйгенса-Штейнера
- •Момент силы. Основной закон вращательного движения.
- •Момент импульса и закон его сохранения
- •Основные положения молекулярно -кинетической теории (mkt)
- •Модель идеального газа. Уравнение Менделеева - Клапейрона.
- •Обратимые и необратимые процессы.
- •Распределение молекул по скоростям (закон Максвелла).
- •17.Опытная проверка закона Максвелла.
- •Барометрическая формула Распределение Больцмана.
- •Явления переноса. Диффузия. Закон Фика. Коэффициент диффузии.
- •Теплопроводность. Закон Фурье. Коэффициент теплопроводности
- •Внутреннее трение. Закон Ньютона. Коэффициент вязкости.
- •Свойства жидкостей. Поверхностное натяжение в жидкостях.
- •Капиллярные явления.
- •Внутренняя энергия тел. Количество теплоты.
- •28)Адиабатический процесс. Уравнение Пуассона.
- •29)Классическая теория теплоемкости и ее недостатки. Теплоемкость
- •30) Круговые процессы. Цикл Карно. Кпд цикла Карно.
- •31)Второй закон термодинамики. Энтропия и её свойства. Третий закон термодинамики.
- •Следствия Недостижимость абсолютного нуля температур
- •Поведение термодинамических коэффициентов
- •32)Энтропия и вероятность.
- •33)Взаимодействие электрических зарядов. Закон Кулона.
- •34)Электрическое поле. Напряженность поля. Электрическое смещение. Теорема Гаусса.
- •Сила, с которой действует электромагнитное поле на заряженные частицы
- •Уравнения Максвелла
- •35)Работа сил электрического поля. Потенциал и разность потенциалов.
- •Взаимодействие электрических зарядов. Закон Кулона. Системы зарядов.
- •Электрическое поле. Напряженность поля. Электрическое смещение. Теорема Гаусса.
- •Работа сил электрического поля. Потенциал и разность потенциалов. Циркуляция вектора напряженности электростатического поля
- •Связь между потенциалом и напряженностью. Потенциал заряженного проводника.
- •Электроемкость уединенного проводника. Конденсаторы. Электрическая энергия заряженного проводника и диэлектрического поля. Электрическая емкость уединенного проводника
- •Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля
- •Сила взаимодействия между обкладками плоского конденсатора.
- •Диэлектрики в электрическом поле. Поляризуемость диэлектриков. Диэлектрическая проницаемость среды.
- •Электрическое поле в проводниках. Понятие о токе проводимости, плотность тока и сила тока. Сторонние силы.
- •Сторонние силы. Электродвижущая сила и напряжение
- •41. Дифференциальная форма закона Ома. Правила Кирхгофа.
- •42. Закон Био-Савара-Лапласа и его приложения.
- •43. Движение заряженных частиц (токов) в магнитном поле. Формула Лоренца для силы, действующей на заряд со стороны электрического и магнитного полей. Действие магнитного поля на движущийся заряд
- •Движение заряженных частиц в магнитном поле
- •44. Электромагнитная индукция. Самоиндукция.
- •45. Энергия магнитного поля тока
- •46. Принцип Гюйгенса. Представление о световых лучах. Законы отражения и преломления света. Полное внутреннее отражение.
- •47. Интерференция света. Условия максимума и минимума интенсивности света при наложении когерентных волн. Интерференция от двух источников.
- •Интерференция света
- •48. Метод зон Френеля. Дифракция Френеля от круглого отверстия.
- •Дифракция Фраунгофера от щели. Дифракция Фраунгофера на одной щели
- •Дифракция от дифракционной решетки. Дифракция Фраунгофера на дифракционной решетке
- •Пространственная дифракционная решетка. Формула Вульфа-Брегга. Пространственная решетка. Рассеяние света
- •§ 182. Дифракция на пространственной решетке. Формула Вульфа — Брэггов
- •Дисперсия света. Дисперсия света
- •Поглощение света. Рассеяние света.
- •Рассеяние света.
- •54.Поляризация света. Поляризаторы. Поляризация света при отражении от поверхности сред. Закон Брюстера. Естественный и поляризованный свет
- •§ 191. Поляризация света при отражении и преломлении на границе двух диэлектриков
- •55. Поляризация света. Двойное лучепреломление. Призма Николя. Двойное лучепреломление
- •Поляризационные призмы и поляроиды
- •Вращение плоскости поляризации. Вращение плоскости поляризации
- •57.Фотоэффект. Законы внешнего фотоэффекта
- •Модель атома по Бору. Постулаты Бора.
- •Постулаты Бора
- •Волны де Бройля.
- •Соотношение неопределенностей Гейзенберга.
- •Энергетические уровни атома водорода, переходы между уровнями.
- •Законы взаимопревращений частиц, ядерные реакции, дефект масс. Дефект массы
- •Ядерные реакции и их основные типы
- •Строение ядер, ядерные силы, устойчивые и неустойчивые ядра. Размер, состав и заряд атомного ядра
- •Ядерные силы
- •Правила смещения
- •Гамма-излучение и его свойства
35)Работа сил электрического поля. Потенциал и разность потенциалов.
Работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только положением начальной и конечной точек и величиной заряда.
Аналогичным свойством обладает и гравитационное поле, и в этом нет ничего удивительного, так как гравитационные и кулоновские силы описываются одинаковыми соотношениями.
Следствием независимости работы от формы траектории является следующее утверждение:
Работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю.
Силовые поля, обладающие этим свойством, называют потенциальными или консервативными.
На
рис. 1.4.2 изображены силовые линии
кулоновского поля точечного заряда Q и
две различные траектории перемещения
пробного заряда q из
начальной точки (1) в конечную точку (2).
На одной из траекторий выделено малое
перемещение
Работа
ΔA кулоновских
сил на этом перемещении равна
|
Таким образом, работа на малом перемещении зависит только от расстояния r между зарядами и его изменения Δr. Если это выражение проинтегрировать на интервале отr = r1 до r = r2, то можно получить
|
|
Рисунок 1.4.2. Работа кулоновских сил при перемещении заряда qзависит только от расстояний r1 и r2 начальной и конечной точек траектории |
Полученный результат не зависит от формы траектории. На траекториях I и II, изображенных на рис. 1.4.2, работы кулоновских сил одинаковы. Если на одной из траекторий изменить направление перемещения заряда q на противоположное, то работа изменит знак. Отсюда следует, что на замкнутой траектории работа кулоновских сил равна нулю.
Если
электростатическое поле создается
совокупностью точечных зарядов
то
при перемещении пробного
заряда q работа A результирующего
поля в соответствии спринципом
суперпозиции будет
складываться из работ
кулоновских
полей точечных зарядов:
Так
как каждый член суммы
не
зависит от формы траектории, то и полная
работа A результирующего
поля не зависит от пути и определяется
только положением начальной и конечной
точек.
Свойство потенциальности электростатического поля позволяет ввести понятие потенциальной энергии заряда в электрическом поле. Для этого в пространстве выбирается некоторая точка (0), и потенциальная энергия заряда q, помещенного в эту точку, принимается равной нулю.
Потенциальная энергия заряда q, помещенного в любую точку (1) пространства, относительно фиксированной точки (0) равна работе A10, которую совершит электростатическое поле при перемещении заряда q из точки (1) в точку (0):
|
(В электростатике энергию принято обозначать буквой W, так как буквой E обозначают напряженность поля.)
Так же, как и в механике, потенциальная энергия определена с точностью до постоянной величины, зависящей от выбора опорной точки (0). Такая неоднозначность в определении потенциальной энергии не приводит к каким-либо недоразумениям, так как физический смысл имеет не сама потенциальная энергия, а разность ее значений в двух точках пространства.
Работа, совершаемая электростатическое полем при перемещении точечного заряда q из точки (1) в точку (2), равна разности значений потенциальной энергии в этих точках и не зависит от пути перемещения заряда и от выбора точки (0).
|
Потенциальная энергия заряда q, помещенного в электростатическое поле, пропорциональна величине этого заряда.
Физическую величину, равную отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда, называют потенциалом φ электрического поля:
|
Потенциал φ является энергетической характеристикой электростатического поля.
Работа A12 по перемещению электрического заряда q из начальной точки (1) в конечную точку (2) равна произведению заряда на разность потенциалов (φ1 – φ2) начальной и конечной точек:
A12 = Wp1 – Wp2 = qφ1 – qφ2 = q(φ1 – φ2). |
В Международной системе единиц (СИ) единицей потенциала является вольт (В).
1 В = 1 Дж / 1 Кл. |
Во многих задачах электростатики при вычислении потенциалов за опорную точку (0) удобно принять бесконечно удаленную точку. В этом случае понятие потенциала может быть определено следующим образом:
Потенциал поля в данной точке пространства равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.
|
Потенциалом называется работа, которую затрачивает электрическое поле, когда оно перемещает положительную единицу заряда из данной точки поля в бесконечно удаленную точку.
Разность потенциалов двух точек поля называется также напряжением между ними, измеряется в вольтах и обозначается буквой U.
Если взять два проводника с различными потенциалами и соединить их металлической проволокой, то, так как между концами проволоки имеется разность потенциалов или напряжение, вдоль проволоки будет действовать электрическое поле. Свободные электроны проволоки под воздействием поля придут в движение в направлении возрастания потенциала, т.е. по проволоке начнет проходить электрический ток. Движение электронов будет продолжаться до тех пор, пока потенциалы проводников не станут равными, а разность потенциалов между ними не станет равной нулю.