Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
07. Изоляторы.doc
Скачиваний:
7
Добавлен:
23.09.2019
Размер:
57.86 Кб
Скачать

Диагностирование изоляции Надежность изоляции

Надежность современного оборудования высокого напряжения во многом определяется надежностью его изоляции.

Процессы, протекающие в изоляции под воздействием различных эксплуатационных (тепловых, химических, механических и электрических) факторов, приводят к ее старению. Эти процессы действуют одновременно и взаимозависимы.

Химические процессы – окисление и другие химические реакции с агрессивными компонентами окружающей среды ухудшают свойства органических изоляционных материалов.

Под воздействием нагрева, вызванного внешними причинами и диэлектрическими потерями, возникает износ, сопровождаемый распадом вещества, появлением хрупкости, снижением механической прочности.

Электрическое воздействие приводит к физическим и химическим изменениям органических изоляционных материалов, вызванных частичными разрядами.

Механические воздействия, вызывая нарушение целостности материала (разрывы, расслоения) снижают электрическую прочность.

Конечным результатом воздействия на изоляционную конструкцию перечисленных факторов является изменение структуры диэлектрика, его свойств, появление продуктов разложения.

Характеристики изоляции

Пробивное напряжение – UПР, В, напряжение при приложении которого происходит пробой диэлектрика с его разрушением или перекрытием изоляции по поверхности (различают напряжение пробоя изолятора в сухом и мокром состояниях).

Сопротивление изоляции постоянному току – R ,МОм.

Комплексная проводимость (комлексное сопротивление) – Y (Z).

Ток утечки через изоляцию I.

Диэлектрические характеристики: диэлектрическая проницаемость , емкость С.

Диэлектрические потери – энергия, рассеиваемая в диэлектрическом материале под воздействием электрического поля. Диэлектрические потери и особенно их изменение характеризуют состояние изоляции.

Диэлектрические потери характеризуются углом диэлектрических потерь , а также тангенсом этого угла tg.

В практике значение tg выражается в процентах.

Тангенс угла диэлектрических потерь почти не зависит от размеров изоляционной конструкции, и дает усредненную объемную характеристику состояния диэлектрика.

Измеряется мостом переменного тока или специальными приборами.

Сопротивление изоляции постоянному току измеряют мегаомметрами на напряжение 500, 1000 и 2500 В индукторного типа (с генератором с ручным приводом) или электронными.

Увлажненность изоляции определяется по методам абсорбции, ем, емкость-частота, емкость-температура и т. д.

Метод абсорбции применяется для определения увлажненности изоляции электрических машин, трансформаторов, силовых кабелей.

Измерения проводят мегаомметром на напряжение 1000 или 2500 В, сравнивая его показания через 15 и 60 с после приложения напряжения. Коэффициент абсорбции

kа=R60 /R15,

где R60 и R15 – сопротивления изоляции соответственно через 60 и 15 с после приложения напряжения.

Для неувлажненной изоляции коэффициент абсорбции равен 1,32, при увлажненной изоляции близок к единице.

М етод емкость-частота основан на измерении емкости при двух частотах 2 и 50 Гц и применяется в основном для залитых маслом трансформаторов. Температура при измерении 10-20 0С. Степень увлажненности оценивается по соотношению:

Для сухой изоляции значение соотношения не превышает 1,21,3.

М етод емкость-температура основан на измерении емкости увлажненной изоляции в интервале температур 20-80 0С. Для неувлажненной изоляцииувеличение емкост не превышает 1520 %:

где С80 и С20 – емкости соответственно при 80 и 20 0С.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]