
- •5.3 Усилительный каскад с общим эмиттером 43
- •1. Полупроводниковые приборы
- •Физические основы полупроводниковых приборов
- •Собственные и примесные полупроводники
- •1.3 Типы пробоев n – р – перехода
- •2. Полупроводниковые диоды
- •2.1 Классификация и маркировка
- •2.2 Выпрямительные диоды
- •2.3 Кремниевые диоды
- •2.3 Кремниевые диоды
- •2.4 Германиевые диоды
- •2.5 Арсеннид-галлиевые диоды.
- •2.6 Селеновые выпрямители
- •2.7 Импульсные диоды
- •2.8 Диоды Шотки
- •2.8.1 Выпрямительные диоды Шотки
- •2.9 Стабилитроны
- •2.10 Cтабисторы
- •2.11 Шумовые диоды
- •2.12 Туннельные диоды
- •2.13 Обращённые диоды
- •2.14 Варикапы
- •3. Транзисторы
- •3.1 Классификация и маркировка
- •3.2 Биполярные транзисторы
- •Схемы включения транзисторов
- •3.2.2 Схема с общим коллектором (эмиттерный повторитель)
- •3.2.3 Статические вах
- •3.2.4 Параметры транзистора в режиме малого сигнала
- •3.3 Полевые транзисторы
- •3.3.1 Полевые транзисторы с управляющим р – n переходом
- •3.3.2 Статические характеристики полевых транзисторов
- •3.3.3 Статические характеристики передачи
- •4. Тиристоры
- •4.1 Диодные тиристоры (динисторы)
- •4.2 Триодные тиристоры
- •5. Полупроводниковые устройства
- •5.1 Усилители
- •5.1.1 Усилительный каскад с общим эмиттером
- •5.1.2 Классы усиления
- •5.1.3 Способы задания рабочей точки покоя
- •5.1.4 Термостабилизация точки покоя
- •5.2 Схема с коллекторной термостабилизацией
- •5.2.1 Каскад с общим эмиттером при работе на переменном сигнале
- •5.2.2 Частотные искажения
- •5.2.3 Параметры усилительного каскада с общим эмиттером
- •5.3 Усилительный каскад с общим эмиттером
- •5.3.1 Временные диаграммы работы каскада с общим коллектором
- •5.3.2 Многокаскадное соединение усилителей
- •5.4 Усилитель мощности
- •5.4.1 Усилитель мощности в классе а, б
- •6. Генераторы
- •6.1 Генераторы с независимым возбуждением.
- •6.2 Генераторы с самовозбуждением (автогенераторы)
- •6.3 Генераторы синусоидальных колебаний
- •6.5 Стабилизация частоты автогенератора
- •6.6 Импульсные устройства, генераторы и формирователи импульсов
- •6.7 Виды и параметры импульсов:
- •6.7.1 Реальный импульс
- •6.7.2 Энергетические параметры импульсного сигала
- •6.8 Генераторы импульсов
- •7. Транзисторные ключи
- •7.1 Процессы переключения транзистора в ключе
- •7.1.1 Включение
- •7.2.2 Выключение
- •8. Импульсные устройства
- •8.1 Триггер
- •8.2 Мультивибратор
- •8.3 Одновибратор
- •9. Интегральные микросхемы
- •9.1 Общие положения (понятия)
- •10. Основы цифровой электроники
- •10.1 Первичные понятия алгебры Буля:
- •10.2 Оснoвные логические элементы
- •10.3 Основные тождества алгебры Буля
- •10.4 Представление логических элементов на основе базовых (на примере логического элемента «и – не»)
- •10.5 Схемотехника логических элементов
- •10.5.1 Элементы не в ттл – микросхемах
- •1 0.5.2. Реальная ячейка схемы ттл
- •10.5.3. Принцип работы элемента и-не.
- •1 0.5.4. Микросхемы с открытым коллектором.
- •10.5.5. Нагрузочная способность элемента ттл
- •10.6. Основы логических схем
- •10.6.1. Способы расчета логических схем
- •10.6.2. Комбинационные логические схемы
- •11 Цифровые микросхемы
- •11.1. Мультиплексор.-кп
- •11.2. Дешифраторы. –ид
- •11.2.1. Принцип действия
- •1 1.3. Шифраторы
- •11.4. Триггеры
- •11.4.1. Асинхронный rs триггер
- •11.4.2. Синхронный rs-триггер
- •11.4.6. Однотактный jk –триггер
- •11.4.7. Временные диаграммы работы
- •11.4.8. Двухтактные jk –триггеры или триггеры типа ms
- •11.5. Счетчики импульсов
- •11.5.1. Четырехразрядный асинхронный двоичный счётчик по модулю 16
- •1 1.5.2. Синхронный счётчик
- •11.5.3. Двоично-десятичный счётчик или счётчик по модулю десять
- •11.5.4. Вычитающие счётчики
- •1 1.5.5. Вычитающий счётчик с самоостановом
- •1 1.5.6. Реверсивный счётчик
- •11.6. Регистры
- •11.6.1. Параллельный регистр или регистр памяти
- •11.6.2 Регистр сдвига, кольцевой регистр
- •12 Арифметические устройства. Алу
- •12.1. Полусумматор
- •12.2. Полные сумматоры.
- •12.3 Параллельный сумматор многоразрядных чисел.
- •12.4. Вычитатели.
- •12.4.1. Использование сумматоров для вычитания
- •12.5. Суммирующее устройство последовательного действия или последовательный сумматор
- •12.6. Двоичное умножение
- •12.7. Сложение и вычитание чисел, представленных в дополнительном коде
- •12.7.1. Правила представления чисел в двоичном коде
- •1 2.8. Сумматор-вычитатель, работающий в дополнительном коде
- •13 Оперативные и постоянные запоминающие устройства.
- •1 3.2. Пример реализации элемента с тремя состояниями: 0, 1, z-состояния.
- •13.3. Постоянные запоминающие устройства пзу
- •13.4. Аналоговые интегральные микросхемы
- •14. Операционные усилители
- •14.1. Общие положения.
- •15. Принципы управления двигателем след. Св-ва п/п приб.
- •15.1 Режимы целесообразного управления по цепи якоря.
- •15.2 Широтно – импульсный преобразователь
- •18.2 Трехфазный управляемый выпрямитель
- •1 8.4. Однополюсный выпрямитель
- •18.5. Выпрямитель с нулевым выводом
- •1 8.3. Мостовой двухполупериодный выпрямитель
- •18.5.Фильтры
- •19.4 Пример системы вертикального управления
2.12 Туннельные диоды
Туннельный диод – это полупроводниковый диод, на прямом участке ВАХ которого имеется участок с отрицательным дифференциальным сопротивлением.
Обозначение:
Рис. 2.9. Туннельный
диод
Рис. 2.10. ВАХ
туннельного диода
Туннельные диоды изготовляют из материала имеющего повышенное количество примесей. В результате этого р – n переход в туннельном диоде создаётся полупроводник с высокой концентрацией носителей зарядов, что приводит к малой толщине р – n перехода и к большей величине диффузионного электрического поля.
Рис. 2.11. Энергетическая
диаграмма
При отсутствии напряжения число элементов перешедших р – n переход равно числу элементов возвратившихся обратно т. е. ток в диоде отсутствует.
При приложении прямого напряжения движение элементов приобретает направленный характер.
а)
б)
а) первый участок б)
второй участок Рис.
2.12. Энергетическая диаграмма
При
достижении прямого напряжения
напряжению пика, туннельный ток имеет
максимальное значение т. к. энергетические
уровни с повышенной концентрацией
носителей зарядов в валентной зоне и
зоне носителей совпадают, и этот ток
называется током пика.
При дальнейшем увеличении прямого напряжения происходит выпрямление энергетической диаграммы. В результате туннельный эффект уменьшается, что приводит к снижению тока.
3)
Рис. 2.13. Выпрямление
энергетической диаграммы
При достижении прямого напряжения значения напряжения впадины, туннельный ток прекращается и ток через диф., равный току впадины, обусловлен движением электронов, как в обычном диоде.
4)
Рис. 2.14. Окончательная
энергетическая диаграмма
При обратном включении туннельный диод работает в режиме туннельного пробоя.
Основные параметры:
1)
пиковый ток
2)
ток впадин
3)
отношение
Для
Ars – gall
диодов
,
для Дени: 3 – 6
4)
напряжение
;
для Ars – gall
для
дени. -
5)
для арсенид – галл
Туннельные диоды используют для генерации и усиления электрических колебаний и в переключающихся схемах.
2.13 Обращённые диоды
Обращённым называют диод у которого проводимость при обратном смещении значительно больше, чем при прямом. Прямая ветвь ВАХ обращённого диода аналогична туннельному, а обратная ветвь ВАХ аналогична выпрямительному диоду.
Основные особенности:
Рис. 2.15. Энергетическая
диаграмма
обращенного
диода
Рис. 2.16. ВАХ
обращённого диода
Основные особенности:
1) способны работать только в диапазоне малых напряжений.
2) обладают хорошими частотными свойствами.
3) малочувствительны к воздействию проникающей радиации.
Схематичное обозначение:
2.14 Варикапы
Это полупроводниковый диод, действие которого основано на использовании зависимости ёмкости от обратного напряжения, и который предназначен для работы в качестве элемента с электрически управляемой ёмкостью.
Схематичное обозначение:
Рис. 2.17. Варикап