
- •5.3 Усилительный каскад с общим эмиттером 43
- •1. Полупроводниковые приборы
- •Физические основы полупроводниковых приборов
- •Собственные и примесные полупроводники
- •1.3 Типы пробоев n – р – перехода
- •2. Полупроводниковые диоды
- •2.1 Классификация и маркировка
- •2.2 Выпрямительные диоды
- •2.3 Кремниевые диоды
- •2.3 Кремниевые диоды
- •2.4 Германиевые диоды
- •2.5 Арсеннид-галлиевые диоды.
- •2.6 Селеновые выпрямители
- •2.7 Импульсные диоды
- •2.8 Диоды Шотки
- •2.8.1 Выпрямительные диоды Шотки
- •2.9 Стабилитроны
- •2.10 Cтабисторы
- •2.11 Шумовые диоды
- •2.12 Туннельные диоды
- •2.13 Обращённые диоды
- •2.14 Варикапы
- •3. Транзисторы
- •3.1 Классификация и маркировка
- •3.2 Биполярные транзисторы
- •Схемы включения транзисторов
- •3.2.2 Схема с общим коллектором (эмиттерный повторитель)
- •3.2.3 Статические вах
- •3.2.4 Параметры транзистора в режиме малого сигнала
- •3.3 Полевые транзисторы
- •3.3.1 Полевые транзисторы с управляющим р – n переходом
- •3.3.2 Статические характеристики полевых транзисторов
- •3.3.3 Статические характеристики передачи
- •4. Тиристоры
- •4.1 Диодные тиристоры (динисторы)
- •4.2 Триодные тиристоры
- •5. Полупроводниковые устройства
- •5.1 Усилители
- •5.1.1 Усилительный каскад с общим эмиттером
- •5.1.2 Классы усиления
- •5.1.3 Способы задания рабочей точки покоя
- •5.1.4 Термостабилизация точки покоя
- •5.2 Схема с коллекторной термостабилизацией
- •5.2.1 Каскад с общим эмиттером при работе на переменном сигнале
- •5.2.2 Частотные искажения
- •5.2.3 Параметры усилительного каскада с общим эмиттером
- •5.3 Усилительный каскад с общим эмиттером
- •5.3.1 Временные диаграммы работы каскада с общим коллектором
- •5.3.2 Многокаскадное соединение усилителей
- •5.4 Усилитель мощности
- •5.4.1 Усилитель мощности в классе а, б
- •6. Генераторы
- •6.1 Генераторы с независимым возбуждением.
- •6.2 Генераторы с самовозбуждением (автогенераторы)
- •6.3 Генераторы синусоидальных колебаний
- •6.5 Стабилизация частоты автогенератора
- •6.6 Импульсные устройства, генераторы и формирователи импульсов
- •6.7 Виды и параметры импульсов:
- •6.7.1 Реальный импульс
- •6.7.2 Энергетические параметры импульсного сигала
- •6.8 Генераторы импульсов
- •7. Транзисторные ключи
- •7.1 Процессы переключения транзистора в ключе
- •7.1.1 Включение
- •7.2.2 Выключение
- •8. Импульсные устройства
- •8.1 Триггер
- •8.2 Мультивибратор
- •8.3 Одновибратор
- •9. Интегральные микросхемы
- •9.1 Общие положения (понятия)
- •10. Основы цифровой электроники
- •10.1 Первичные понятия алгебры Буля:
- •10.2 Оснoвные логические элементы
- •10.3 Основные тождества алгебры Буля
- •10.4 Представление логических элементов на основе базовых (на примере логического элемента «и – не»)
- •10.5 Схемотехника логических элементов
- •10.5.1 Элементы не в ттл – микросхемах
- •1 0.5.2. Реальная ячейка схемы ттл
- •10.5.3. Принцип работы элемента и-не.
- •1 0.5.4. Микросхемы с открытым коллектором.
- •10.5.5. Нагрузочная способность элемента ттл
- •10.6. Основы логических схем
- •10.6.1. Способы расчета логических схем
- •10.6.2. Комбинационные логические схемы
- •11 Цифровые микросхемы
- •11.1. Мультиплексор.-кп
- •11.2. Дешифраторы. –ид
- •11.2.1. Принцип действия
- •1 1.3. Шифраторы
- •11.4. Триггеры
- •11.4.1. Асинхронный rs триггер
- •11.4.2. Синхронный rs-триггер
- •11.4.6. Однотактный jk –триггер
- •11.4.7. Временные диаграммы работы
- •11.4.8. Двухтактные jk –триггеры или триггеры типа ms
- •11.5. Счетчики импульсов
- •11.5.1. Четырехразрядный асинхронный двоичный счётчик по модулю 16
- •1 1.5.2. Синхронный счётчик
- •11.5.3. Двоично-десятичный счётчик или счётчик по модулю десять
- •11.5.4. Вычитающие счётчики
- •1 1.5.5. Вычитающий счётчик с самоостановом
- •1 1.5.6. Реверсивный счётчик
- •11.6. Регистры
- •11.6.1. Параллельный регистр или регистр памяти
- •11.6.2 Регистр сдвига, кольцевой регистр
- •12 Арифметические устройства. Алу
- •12.1. Полусумматор
- •12.2. Полные сумматоры.
- •12.3 Параллельный сумматор многоразрядных чисел.
- •12.4. Вычитатели.
- •12.4.1. Использование сумматоров для вычитания
- •12.5. Суммирующее устройство последовательного действия или последовательный сумматор
- •12.6. Двоичное умножение
- •12.7. Сложение и вычитание чисел, представленных в дополнительном коде
- •12.7.1. Правила представления чисел в двоичном коде
- •1 2.8. Сумматор-вычитатель, работающий в дополнительном коде
- •13 Оперативные и постоянные запоминающие устройства.
- •1 3.2. Пример реализации элемента с тремя состояниями: 0, 1, z-состояния.
- •13.3. Постоянные запоминающие устройства пзу
- •13.4. Аналоговые интегральные микросхемы
- •14. Операционные усилители
- •14.1. Общие положения.
- •15. Принципы управления двигателем след. Св-ва п/п приб.
- •15.1 Режимы целесообразного управления по цепи якоря.
- •15.2 Широтно – импульсный преобразователь
- •18.2 Трехфазный управляемый выпрямитель
- •1 8.4. Однополюсный выпрямитель
- •18.5. Выпрямитель с нулевым выводом
- •1 8.3. Мостовой двухполупериодный выпрямитель
- •18.5.Фильтры
- •19.4 Пример системы вертикального управления
1. Полупроводниковые приборы
Физические основы полупроводниковых приборов
До 40-х годов в электронике использовались в основном два вида материалов: проводники и диэлектрики. Полупроводники фактически не использовались и их физические свойства не изучались. Хотя простейшие детекторы были использованы ещё в конце 19 – го века в опытах Попова. В 20 – х 30 – х годах появились медно-землистые и семновые выпрямители. В 30 – х 40 – х были изобретены термисторы и оротоэлементы и в 48 – ом году появился первый полупроводниковый транзистор этот год и считается началом полупроводниковой эры в электронике. Из курса квантовой физики известно, что электроны в атоме могут находиться на строго определённых энергетических уровнях. Энергетический уровень на котором электрон находится невозбуждённом состоянии называется валентным. С получением кванта энергии электрон переходит на более высокий энергетический уровень (разрешённый).
При образовании кристалла в результате взаимодействия атомов металлической решётки, энергетические уровни отдельных атомов разделяются на энергетические зоны.
Энергетические
зоны
Запрещённая
зона
Рис. 1.1. Энергетические
уровни атомов
У
диэлектриков
,
у полупроводников
.
У проводников запретная зона отсутствует.
Электронная проводимость материала определяется концентрацией электронов в зоне проводимости. У проводников эта концентрация высока и мало зависит от внешних воздействий. У полупроводников концентрация элементов в зоне проводимости сильно зависит от внешних воздействий. Поэтому с увеличением температуры концентрация электронов в зоне проводимости увеличивается следовательно его сопротивление уменьшается.
Собственные и примесные полупроводники
Собственные проводники – полупроводники не содержащие примесей.
В процессе облучения или других внешних воздействий на полупроводник происходит возбуждение атомов, при этом в валентной зоне остаётся свободный энергетический уровень, который называется дыркой. В этом случае говорят о генерации пары электрон – дырка.
Особенности собственных полупроводников:
При температуре равной относительному нулю все атомы полупроводника находятся в невозбужденном состоянии и концентрация носителей зарядов равна нулю.
При повышении температуры концентрация увеличивается, но концентрация электронов равна концентрации дырок.
В процессе создания полупроводников полупроводники возникающие с избыточной концентрацией электронов – (n – тип), а с избыточной дырочной концентрацией – (р – тип). Это достигается путём добавления примесей.
Полупроводник n – типа образуется при добавлении донорной примеси.
Рис. 1.2. Возникновение
примесной электропроводности
Валентные элементы атомов мышьяка образуют ковалентную связь с валентными элементами атомов кремния при этом остаётся один свободный электрон. Этот электрон находится вне валентной зоны и легко может перейти а зону проводимости.
Полупроводник p – типа образуется путём добавления акцепторной примеси. Атом гелия имеет три валентных элемента. Они образуют ковалентную связь с тремя атомами кремния, при этом остаётся свободным один энергетический уровень в валентной зоне.
Рис. 1.3. Возникновение
примесной дырочной электропроводности
Электронно-дырочный переход – это переход образуемый при соединении двух полупроводников разного типа проводимости.
Рис. 1.4. р–n
тип
Рис. 1.5. Энергетическая
диаграмма. Переход электронов
Под действием градиента концентрации электронов из n – области переходят в р – область. В результате в р – области на границе р – n перехода возникает объемный отрицательный заряд, а в n – области – объёмный положительный заряд. Взаимодействие этих зарядов создаёт диффузионное электрическое поле. Разность потенциалов возникающих на границе называется - контактной разностью потенциалов .
Рис. 1.6. Искривление
энергетической диаграммы
Наличие
диффузии электрического поля приводит
к искривлению энергетических диаграмм
n
– p
– перехода. Возникает потенциальный
барьер
для основных носителей зарядов. Наступает
состояние равновесия.
Если мы приложим к n – р – переходу прямое напряжение (“+”к р-обл. и “–“ к n-обл.), то внешнее электрическое поле будет направленно навстречу диффузионному. Это приведёт к уменьшению потенциального барьера. В результате основные носители зарядов смогут передвигаться через n – р – переход. В этом случае говорят об инжекции основных носителей зарядов.
Приложим обратное напряжение (“+” к n – обл.). В этом случае внешнее электрическое поле совпадает по направлению с диффузионным. При приложении обратного напряжения потенциальный барьер для основных носителей заряда увеличивается. Преодолеть его могут только электроны с большой энергией. В любой точке полупроводника, кроме примесной концентрации носителей заряда, существует и собственная концентрация носителей заряда. Для них обратное напряжение является прямым. В этом случае говорят об экстракции электронов неосновных носителей зарядов.
Для улучшения выпрямительных свойств n – р – перехода соединяемые области выполняют с разной концентрацией носителей зарядов.
Рис. 1.7. Графическая
реализация реального и идеального р-n
перехода
Область, имеющая более высокую концентрацию зарядов называют эмиттером, другую область называют базой.
Рис. 1.8. Вольт –
амперная характеристика идеального n
– р – перехода.
Основное отличие идеального n – р – перехода от реального наличие пробоев в обратной ветви ВАХ и небольшое падение напряжения на n – р – переходе при прямом включении.