
- •Вопрос 1(Предмет и содержание тм. Статика, предмет и задачи статики. Основные понятия статики. Аксиомы статики.)
- •Первая аксиома.
- •Вторая аксиома.
- •Третья аксиома.
- •Четвертая аксиома.
- •Пятая аксиома.
- •Шестая аксиома.
- •Вопрос 2(Связи и реакции связей. Аксиома связей – основной принцип решения задач статики.)
- •Вопрос 3(Теорема о непараллельных сил равновесии 3-х.)
- •Вопрос 4(Геометрический и аналитический способы задания силы. Проекция силы на ось и на плоскость. Способ двойного проецирования)
- •Вопрос 5(Геометрический и аналитический способы сложения сил.)
- •Вопрос 6(Сходящаяся система сил. Равнодействующая системы сходящихся сил.)
- •Вопрос 7
- •Вопрос 8(Момент силы относительно центра как мера вращательного действия силы. Алгебраический момент силы относительно центра.)
- •Вопрос 9(Теорема о моменте равнодействующей (теорема Вариньона).)
- •Вопрос 10
- •Вопрос 11(Пара сил, алгебраический момент пары сил. Момент пары сил как вектор. Теорема о независимости суммы моментов сил, составляющих пару, относительно произвольного центра.)
- •Вопрос 12(Теорема об эквивалентности пар на плоскости.)
- •Вопрос 13
- •Вопрос 14(Теорема о сложении пар в пространстве.)
- •Вопрос 15(Условия равновесия системы пар на плоскости и в пространстве)
- •Вопрос 16(Лемма о параллельном переносе силы (лемма Пуансо).)
- •Вопрос 17,18
- •Вопрос 19(Уравнения равновесия произвольной плоской системы сил в трех формах)
- •Вопрос 20
- •Вопрос 21(Сосредоточенные силы и распределенные нагрузки. Жесткая заделка)
- •Вопрос 22(Равновесие системы тел. Определение реакций внешних и внутренних связей)
- •Вопрос 23(Трение скольжения. Законы трения. Коэффициент, угол, конус трения. Область равновесия)
- •Вопрос 24(Трение качения, коэффициент трения качения)
- •Вопрос 25
- •Вопрос 26(Момент силы относительно оси. Зависимость между моментами силы относительно оси и относительно центра, лежащего на этой оси)
- •Вопрос 27(Момент силы относительно центра как вектор. Векторная формула для нахождения момента силы)
- •Вопрос 28(Приведение произвольной пространственной системы сил к центру (теорема Пуансо). Главный вектор и главный момент произвольной пространственной системы сил)
- •Вопрос 29
- •Вопрос 30(Частные случаи приведения произвольной пространственной системы сил к центру)
- •Вопрос 31 Равновесие тела под действием пространственной системы сил
- •Вопрос 32(Центр параллельных сил и его координаты)
- •Вопрос 33(Центр тяжести тела и его координаты. Способы определения положения центра тяжести)
- •Вопрос 34(Центр тяжести однородных тел. Центр тяжести объема, поверхности, линии. Примеры (центр тяжести треугольника, дуги окружности, кругового сектора))
- •Вопрос 35(Предмет и содержание кинематики. Основные понятия и задачи кинематики)
- •Вопрос 36(Способы задания движения точки. Связь между координатным и естественным способами задания движения точки)
- •Вопрос 37(Определение траектории, скорости и ускорения точки при векторном способе задания движения)
- •Вопрос 38(Определение траектории, скорости и ускорения точки при координатном способе задания движения)
- •Вопрос 39(Естественный трехгранник и естественные оси. Кривизна траектории) Естественный трехгранник
- •Вопрос 40(Скорость и ускорение точки при естественном способе задания движения. Нормальное и касательное ускорения)
- •Вопрос 41(Равномерное и равнопеременное движение точки)
- •Вопрос 42(Задание движения твердого тела. Поступательное движение твердого тела. Теорема о траекториях, скоростях и ускорениях точек тела при поступательном движении)
- •Вопрос 43(Вращательное движение тела вокруг неподвижной оси. Уравнение вращения. Угловая скорость и угловое ускорение. Векторное представление угловой скорости и углового ускорения)
- •Вопрос 44(Скорость и ускорение произвольной точки вращающегося тела)
- •Вопрос 45
- •Вопрос 46(Плоское движение твердого тела и движение плоской фигуры в своей плоскости. Уравнения плоского движения тела)
- •Вопрос 47(Определение скорости произвольной точки плоской фигуры. Теорема о сложении скоростей при плоском движении. Теорема о проекциях скоростей двух точек)
- •Вопрос 48(Мгновенный центр скоростей (мцс). Способы определения положения мцс)
- •Вопрос 49
- •Вопрос 50(Понятие о мгновенном центре ускорений)
- •Вопрос 51(Определение ускорения произвольной точки плоской фигуры Теорема о сложении ускорений при плоском движении)
- •Вопрос 52(Сложное движение точки. Теорема о сложении скоростей при сложном движении точки)
- •Относительное движение – в движущихся осях уравнениями
- •Вопрос 53(Сложное движение точки. Теорема о сложении ускорений при сложном движении точки)
- •Вопрос 54(Ускорение Кориолиса. Случай равенства нулю кориолисова ускорения)
- •Вопрос 55(Движение твердого тела вокруг неподвижной точки (сферическое движение). Углы Эйлера. Уравнения движения)
- •Вопрос 56(Мгновенная ось вращения. Векторы угловой скорости и углового ускорения. Скорость произвольной точки тела (без доказательства))
- •Вопрос 57(Общий случай движения тела. Скорость и ускорение произвольной точки тела в общем случае (без доказательства))
- •Вопрос 58(Сложное (составное) движение твердого тела. Сложение поступательных движений) Скорости точек твердого тела в сложном движении.
- •Вопрос 60(Пара мгновенных вращений. Кинематический винт. Мгновенная винтовая ось)
Вопрос 7
Вопрос 8(Момент силы относительно центра как мера вращательного действия силы. Алгебраический момент силы относительно центра.)
Момент силы относительно центра
Наряду с поступательным движением твердое тело может совершать вращение вокруг центра (точки).
Вращение характеризуется моментом силы.
Пусть сила приложена в точке А. Она стремится повернуть тело вокруг неподвижного центра О . Перпендикуляр h опущенный из точки О на линию действия силы называется плечом силы относительно центра О.
Так как точку приложения силы можно перемещать вдоль линии действия силы, то вращение тела будет зависеть от:
1) модуля силы и плеча h.
2) положения плоскости ОАВ,
3) направления поворота в этой плоскости.
Пусть вся система сил лежит в одной плоскости, тогда направление можно охарактеризовать знаком. Дадим следующее определение момента силы:
Моментом силы относительно центра О называется величина, равная взятому с соответствующим знаком произведению модуля силы на длину плеча.
Обозначается
момент силы как
:
Знак плюс выбираем если сила старается повернуть тело против ходя часовой стрелки, в противном случае берем знак минус.
Единицы
измерения:
(ньютон
на метр),
(килограмм
на метр).
Свойства момента силы:
1) момент силы не изменится при переносе точки приложения силы вдоль ее линии действия;
2) момент силы равен нулю, тогда и только тогда, когда сила равна нулю, или ее линия действия проходит через центр О. (h = 0).
3) момент силы численно равен удвоенной площади треугольника ОАВ.
Вопрос 9(Теорема о моменте равнодействующей (теорема Вариньона).)
Теорема Вариньона о моменте равнодействующей
Момент равнодействующей плоской системы сходящихся сил относительно любого центра равен алгебраической сумме моментов слагаемых сил относительно того же центра.
Рассмотрим систему сил сходящихся в точке А (рис. 21 ).
Выберем произвольный центр О и проведем через него ось Ох перпендикулярную отрезку ОА.
Найдем
выражения для моментов
и
т.д.
Это математическое выражение теоремы Вариньона.
Вопрос 10
Вопрос 11(Пара сил, алгебраический момент пары сил. Момент пары сил как вектор. Теорема о независимости суммы моментов сил, составляющих пару, относительно произвольного центра.)
Система двух равных по модулю, параллельных и противоположно направленных сил и называется парой сил.
Система не находится в равновесии, но и не имеет равнодействующей.
Плоскость, проходящая через линии действия сил называют плоскостью действия пары (рис. 24 ).
Расстояние d между линиями действия сил пары называют плечом пары.
Действие пары сил на твердое тело сводится к вращательному эффекту и зависит от:
1) модуля F и длины плеча d;
2) положения плоскости пары;
3) направления поворота в этой плоскости.
Для характеристики этого вращательного эффекта вводится понятие момент пары.
Моментом пары называется величина, равная взятому с соответствующим знаком произведению модуля одной из сил пары на ее плечо.
Момент пары условимся считать положительным (+), если пара стремится повернуть тело против хода часовой стрелки, и отрицательным (-) - когда по ходу часовой стрелки.
Обозначение момента
пары m или М без индекса имеет свой смысл,
так как момент пары нельзя смешивать с
моментом силы относительно центра и
этот центр указывается в индексе
(например:
).
Момент же пары определяется только
силами и плечом.
Действие пары сил, как уже указывалось выше, характеризуется тремя условиями. При характеристике пар необходимо задавать все три значения. Но мы знаем, что вектор-нормаль к плоскости задает значения второго и третьего условия. Если мы теперь пронормируем вектор-нормаль значением момента пары, то все три условия будут выполнены. Эти соображения и позволили рассматривать момент пары как вектор.
Будем изображать
момент пары вектором
или
,
модуль которого равен модулю момента
пары, и который направлен перпендикулярно
плоскости действия пары, в ту сторону
откуда поворот пары виден происходящим
против хода часовой стрелки (рис.
25
).
Если рассматривать только пары лежащие в одной плоскости, то вместо вектора момента пары, можно стрелкой указывать только направлением поворота.
Вектор на рис. 25 условно изображен выходящим из точек В и D, однако он может изображаться выходящим из середины АВ или CD или из произвольной точки плоскости действия пары, так как