
- •Вопрос 1(Предмет и содержание тм. Статика, предмет и задачи статики. Основные понятия статики. Аксиомы статики.)
- •Первая аксиома.
- •Вторая аксиома.
- •Третья аксиома.
- •Четвертая аксиома.
- •Пятая аксиома.
- •Шестая аксиома.
- •Вопрос 2(Связи и реакции связей. Аксиома связей – основной принцип решения задач статики.)
- •Вопрос 3(Теорема о непараллельных сил равновесии 3-х.)
- •Вопрос 4(Геометрический и аналитический способы задания силы. Проекция силы на ось и на плоскость. Способ двойного проецирования)
- •Вопрос 5(Геометрический и аналитический способы сложения сил.)
- •Вопрос 6(Сходящаяся система сил. Равнодействующая системы сходящихся сил.)
- •Вопрос 7
- •Вопрос 8(Момент силы относительно центра как мера вращательного действия силы. Алгебраический момент силы относительно центра.)
- •Вопрос 9(Теорема о моменте равнодействующей (теорема Вариньона).)
- •Вопрос 10
- •Вопрос 11(Пара сил, алгебраический момент пары сил. Момент пары сил как вектор. Теорема о независимости суммы моментов сил, составляющих пару, относительно произвольного центра.)
- •Вопрос 12(Теорема об эквивалентности пар на плоскости.)
- •Вопрос 13
- •Вопрос 14(Теорема о сложении пар в пространстве.)
- •Вопрос 15(Условия равновесия системы пар на плоскости и в пространстве)
- •Вопрос 16(Лемма о параллельном переносе силы (лемма Пуансо).)
- •Вопрос 17,18
- •Вопрос 19(Уравнения равновесия произвольной плоской системы сил в трех формах)
- •Вопрос 20
- •Вопрос 21(Сосредоточенные силы и распределенные нагрузки. Жесткая заделка)
- •Вопрос 22(Равновесие системы тел. Определение реакций внешних и внутренних связей)
- •Вопрос 23(Трение скольжения. Законы трения. Коэффициент, угол, конус трения. Область равновесия)
- •Вопрос 24(Трение качения, коэффициент трения качения)
- •Вопрос 25
- •Вопрос 26(Момент силы относительно оси. Зависимость между моментами силы относительно оси и относительно центра, лежащего на этой оси)
- •Вопрос 27(Момент силы относительно центра как вектор. Векторная формула для нахождения момента силы)
- •Вопрос 28(Приведение произвольной пространственной системы сил к центру (теорема Пуансо). Главный вектор и главный момент произвольной пространственной системы сил)
- •Вопрос 29
- •Вопрос 30(Частные случаи приведения произвольной пространственной системы сил к центру)
- •Вопрос 31 Равновесие тела под действием пространственной системы сил
- •Вопрос 32(Центр параллельных сил и его координаты)
- •Вопрос 33(Центр тяжести тела и его координаты. Способы определения положения центра тяжести)
- •Вопрос 34(Центр тяжести однородных тел. Центр тяжести объема, поверхности, линии. Примеры (центр тяжести треугольника, дуги окружности, кругового сектора))
- •Вопрос 35(Предмет и содержание кинематики. Основные понятия и задачи кинематики)
- •Вопрос 36(Способы задания движения точки. Связь между координатным и естественным способами задания движения точки)
- •Вопрос 37(Определение траектории, скорости и ускорения точки при векторном способе задания движения)
- •Вопрос 38(Определение траектории, скорости и ускорения точки при координатном способе задания движения)
- •Вопрос 39(Естественный трехгранник и естественные оси. Кривизна траектории) Естественный трехгранник
- •Вопрос 40(Скорость и ускорение точки при естественном способе задания движения. Нормальное и касательное ускорения)
- •Вопрос 41(Равномерное и равнопеременное движение точки)
- •Вопрос 42(Задание движения твердого тела. Поступательное движение твердого тела. Теорема о траекториях, скоростях и ускорениях точек тела при поступательном движении)
- •Вопрос 43(Вращательное движение тела вокруг неподвижной оси. Уравнение вращения. Угловая скорость и угловое ускорение. Векторное представление угловой скорости и углового ускорения)
- •Вопрос 44(Скорость и ускорение произвольной точки вращающегося тела)
- •Вопрос 45
- •Вопрос 46(Плоское движение твердого тела и движение плоской фигуры в своей плоскости. Уравнения плоского движения тела)
- •Вопрос 47(Определение скорости произвольной точки плоской фигуры. Теорема о сложении скоростей при плоском движении. Теорема о проекциях скоростей двух точек)
- •Вопрос 48(Мгновенный центр скоростей (мцс). Способы определения положения мцс)
- •Вопрос 49
- •Вопрос 50(Понятие о мгновенном центре ускорений)
- •Вопрос 51(Определение ускорения произвольной точки плоской фигуры Теорема о сложении ускорений при плоском движении)
- •Вопрос 52(Сложное движение точки. Теорема о сложении скоростей при сложном движении точки)
- •Относительное движение – в движущихся осях уравнениями
- •Вопрос 53(Сложное движение точки. Теорема о сложении ускорений при сложном движении точки)
- •Вопрос 54(Ускорение Кориолиса. Случай равенства нулю кориолисова ускорения)
- •Вопрос 55(Движение твердого тела вокруг неподвижной точки (сферическое движение). Углы Эйлера. Уравнения движения)
- •Вопрос 56(Мгновенная ось вращения. Векторы угловой скорости и углового ускорения. Скорость произвольной точки тела (без доказательства))
- •Вопрос 57(Общий случай движения тела. Скорость и ускорение произвольной точки тела в общем случае (без доказательства))
- •Вопрос 58(Сложное (составное) движение твердого тела. Сложение поступательных движений) Скорости точек твердого тела в сложном движении.
- •Вопрос 60(Пара мгновенных вращений. Кинематический винт. Мгновенная винтовая ось)
Вопрос 5(Геометрический и аналитический способы сложения сил.)
Аналитически способ задания и сложения сил
Выберем
систему координат Oxyz. Вектор
можно
построить, зная модуль
и
углы
между
вектором и соответствующими осями .
Задание
этих величин и определяет силу
.
Точка приложения силы должна быть задана
дополнительно координатами х, у, z. Кроме
того, силу можно задавать проекциями
на оси
.
Тогда
Эти формулы позволяют, зная проекции силы на оси координат найти ее модуль и углы с осями, т.е. определить силу. Зная проекции, можно построить вектор геометрически.
Для плоскости формулы (2.2.1) и (2.2.2) запишутся
Построение в плоскости производится по 4-й аксиоме статики.
Рассмотрим теперь аналитический способ сложения сил. Зависимость между векторами и их проекциями дает следующая теорема:
Проекция вектора суммы на какую-нибудь ось равна алгебраической сумме проекций слагаемых векторов на ту же ось .
Данные соотношения позволяют складывать силы аналитически. Можно заметить идентичность формул (2.2.1)-(2.2.4) и (2.2.9)-(2.2.11).
Геометрический способ сложения сил
Решение задач в статике часто связано с операцией сложения из векторной алгебры. Вспомним старые приемы и введем некоторые определения.
Величина, равная геометрической сумме сил какой-либо системы, называется главным вектором системы.
Геометрическую сумму сил не следует смешивать с равнодействующей. Для многих систем сил равнодействующей не существует, а главный вектор можно вычислить для любой.
Рассмотрим сложение двух сил на плоскости. Геометрическая сумма сил находится по правилу параллелограмма построением силового треугольника .
Модуль R равнодействующей определяем как сторону треугольника :
углы находим по теореме синусов, учитывая, что , получаем
В продолжение геометрического способа сложения сил, напомним о сложении трех сил не лежащих в оной плоскости.
Геометрическая сумма трех сил , не лежащих в одной плоскости изображается диагональю параллелепипеда, построенного на этих силах .
Здесь необходимо подчеркнуть полную аналогию рисунков 14 и 17, где в роли выступает , а в роли соответственно . Coответственно мы можем использовать формулы (2.2.1-2.2.4).
Рассматривая плоскую систему сходящихся сил необходимо рассмотреть и положение такой системы сил.
Геометрическая сумма (главный вектор) любой системы сил определяется построением силового многоугольника или последовательным сложением сил системы. Пусть дана система сходящихся сил .
Для построения силового многоугольника выбираем произвольную точку О и переносим в нее начало , затем переносим в конец вектора начало и т.д. после переноса вектора конец вектора будет в некоторой точке N. Соединяем точки О и N вектором . Этот замыкающий вектор и будет главным вектором системы.
При последовательном сложении сил (рис. 18, а) все они переносятся вдоль линий действия в точку пересечения А. Последовательно, по правилу параллелограмма, складываются силы получается вектор :
который представляет собой равнодействующую, равную главному вектору всех сил и приложенную в точке их пересечения.