
- •Вопрос 1(Предмет и содержание тм. Статика, предмет и задачи статики. Основные понятия статики. Аксиомы статики.)
- •Первая аксиома.
- •Вторая аксиома.
- •Третья аксиома.
- •Четвертая аксиома.
- •Пятая аксиома.
- •Шестая аксиома.
- •Вопрос 2(Связи и реакции связей. Аксиома связей – основной принцип решения задач статики.)
- •Вопрос 3(Теорема о непараллельных сил равновесии 3-х.)
- •Вопрос 4(Геометрический и аналитический способы задания силы. Проекция силы на ось и на плоскость. Способ двойного проецирования)
- •Вопрос 5(Геометрический и аналитический способы сложения сил.)
- •Вопрос 6(Сходящаяся система сил. Равнодействующая системы сходящихся сил.)
- •Вопрос 7
- •Вопрос 8(Момент силы относительно центра как мера вращательного действия силы. Алгебраический момент силы относительно центра.)
- •Вопрос 9(Теорема о моменте равнодействующей (теорема Вариньона).)
- •Вопрос 10
- •Вопрос 11(Пара сил, алгебраический момент пары сил. Момент пары сил как вектор. Теорема о независимости суммы моментов сил, составляющих пару, относительно произвольного центра.)
- •Вопрос 12(Теорема об эквивалентности пар на плоскости.)
- •Вопрос 13
- •Вопрос 14(Теорема о сложении пар в пространстве.)
- •Вопрос 15(Условия равновесия системы пар на плоскости и в пространстве)
- •Вопрос 16(Лемма о параллельном переносе силы (лемма Пуансо).)
- •Вопрос 17,18
- •Вопрос 19(Уравнения равновесия произвольной плоской системы сил в трех формах)
- •Вопрос 20
- •Вопрос 21(Сосредоточенные силы и распределенные нагрузки. Жесткая заделка)
- •Вопрос 22(Равновесие системы тел. Определение реакций внешних и внутренних связей)
- •Вопрос 23(Трение скольжения. Законы трения. Коэффициент, угол, конус трения. Область равновесия)
- •Вопрос 24(Трение качения, коэффициент трения качения)
- •Вопрос 25
- •Вопрос 26(Момент силы относительно оси. Зависимость между моментами силы относительно оси и относительно центра, лежащего на этой оси)
- •Вопрос 27(Момент силы относительно центра как вектор. Векторная формула для нахождения момента силы)
- •Вопрос 28(Приведение произвольной пространственной системы сил к центру (теорема Пуансо). Главный вектор и главный момент произвольной пространственной системы сил)
- •Вопрос 29
- •Вопрос 30(Частные случаи приведения произвольной пространственной системы сил к центру)
- •Вопрос 31 Равновесие тела под действием пространственной системы сил
- •Вопрос 32(Центр параллельных сил и его координаты)
- •Вопрос 33(Центр тяжести тела и его координаты. Способы определения положения центра тяжести)
- •Вопрос 34(Центр тяжести однородных тел. Центр тяжести объема, поверхности, линии. Примеры (центр тяжести треугольника, дуги окружности, кругового сектора))
- •Вопрос 35(Предмет и содержание кинематики. Основные понятия и задачи кинематики)
- •Вопрос 36(Способы задания движения точки. Связь между координатным и естественным способами задания движения точки)
- •Вопрос 37(Определение траектории, скорости и ускорения точки при векторном способе задания движения)
- •Вопрос 38(Определение траектории, скорости и ускорения точки при координатном способе задания движения)
- •Вопрос 39(Естественный трехгранник и естественные оси. Кривизна траектории) Естественный трехгранник
- •Вопрос 40(Скорость и ускорение точки при естественном способе задания движения. Нормальное и касательное ускорения)
- •Вопрос 41(Равномерное и равнопеременное движение точки)
- •Вопрос 42(Задание движения твердого тела. Поступательное движение твердого тела. Теорема о траекториях, скоростях и ускорениях точек тела при поступательном движении)
- •Вопрос 43(Вращательное движение тела вокруг неподвижной оси. Уравнение вращения. Угловая скорость и угловое ускорение. Векторное представление угловой скорости и углового ускорения)
- •Вопрос 44(Скорость и ускорение произвольной точки вращающегося тела)
- •Вопрос 45
- •Вопрос 46(Плоское движение твердого тела и движение плоской фигуры в своей плоскости. Уравнения плоского движения тела)
- •Вопрос 47(Определение скорости произвольной точки плоской фигуры. Теорема о сложении скоростей при плоском движении. Теорема о проекциях скоростей двух точек)
- •Вопрос 48(Мгновенный центр скоростей (мцс). Способы определения положения мцс)
- •Вопрос 49
- •Вопрос 50(Понятие о мгновенном центре ускорений)
- •Вопрос 51(Определение ускорения произвольной точки плоской фигуры Теорема о сложении ускорений при плоском движении)
- •Вопрос 52(Сложное движение точки. Теорема о сложении скоростей при сложном движении точки)
- •Относительное движение – в движущихся осях уравнениями
- •Вопрос 53(Сложное движение точки. Теорема о сложении ускорений при сложном движении точки)
- •Вопрос 54(Ускорение Кориолиса. Случай равенства нулю кориолисова ускорения)
- •Вопрос 55(Движение твердого тела вокруг неподвижной точки (сферическое движение). Углы Эйлера. Уравнения движения)
- •Вопрос 56(Мгновенная ось вращения. Векторы угловой скорости и углового ускорения. Скорость произвольной точки тела (без доказательства))
- •Вопрос 57(Общий случай движения тела. Скорость и ускорение произвольной точки тела в общем случае (без доказательства))
- •Вопрос 58(Сложное (составное) движение твердого тела. Сложение поступательных движений) Скорости точек твердого тела в сложном движении.
- •Вопрос 60(Пара мгновенных вращений. Кинематический винт. Мгновенная винтовая ось)
Вопрос 45
Вопрос 46(Плоское движение твердого тела и движение плоской фигуры в своей плоскости. Уравнения плоского движения тела)
Вначале сформулируем основное свойство, а затем его докажем.
П
лоское
движение твердого тела можно представить
как поступательное движение совместно
с полюсом и вращение или угловое движение
вокруг полюса, причем угловое движение
не зависит от поступательного движения.
Из выражений (1) мы видим, что первые два уравнения описывают движение полюса или поступательное движение базовой системы координатAx*y*, а третье уравнение описывает вращение или угловое движение тела в базовой системе координат, причем вращение происходит вокруг осей Az* иAz1 , перпендикулярных плоскости рисунка, и на рис. 79 не показанных.
Докажем
независимость углового движения тела
от поступательного движения, выбрав
новый полюс A' (рис.
80). Из-за этого, так как xA'
xA и yA'
yA,
изменятся параметры поступательного
движения. Воспользовавшись произвольным
выбором второй точки отрезка B',
мы всегда можем ввести связанную с телом
систему координат A'x'1y'1 (рис.
80) так, чтобы φ'
= φ и
параметры углового движения (угол
поворота, угловая скорость, угловое
ускорение) не изменились, доказав этим,
что угловое движение не зависит от
поступательного движения.
Плоским(плоскопараллельным) назыв. такое движение, при котором все его точки перемещаются параллельно некоторой неподвижной плоскости.
Уравнения плоского движения: xA= f1(t), yA= f2(t), j = f3(t), точка А назыв. полюсом. Плоское движение тв.тела слагается из поступательного движения, при котором все точки тела движутся так же, как полюс (А),и из вращательного движения вокруг этого полюса. Поступательное перемещение зависит от выбора полюса, а величина и направление угла поворота не зависят.
Вопрос 47(Определение скорости произвольной точки плоской фигуры. Теорема о сложении скоростей при плоском движении. Теорема о проекциях скоростей двух точек)
Определение скоростей точек плоской фигуры
Было
отмечено, что движение плоской фигуры
можно рассматривать как слагающееся
из поступательного движения, при котором
все точки фигуры движутся со
скоростью
полюса А,
и из вращательного движения вокруг
этого полюса. Покажем, что скорость
любой точки М фигуры
складывается геометрически из
скоростей, которые точка получает в
каждом из этих движений.
В
самом деле, положение любой точки М фигуры
определяется по отношению к
осям Оху радиусом-вектором
(рис.30),
где
-
радиус-вектор полюса А,
-
вектор, определяющий положение
точки М относительно
осей
,
перемещающихся вместе с
полюсом А поступательно
(движение фигуры по отношению к этим
осям представляет собой вращение вокруг
полюса А).
Тогда
.
В
полученном равенстве величина
есть
скорость полюса А;
величина же
равна
скорости
,
которую точка М получает
при
,
т.е. относительно осей
,
или, иначе говоря, при вращении фигуры
вокруг полюса А.
Таким образом, из предыдущего равенства
действительно следует, что
.
Скорость , которую точка М получает при вращении фигуры вокруг полюса А:
,
где
-
угловая скорость фигуры.
Таким
образом, скорость любой точки М плоской
фигуры геометрически складывается из
скорости какой-нибудь другой точки А,
принятой за полюс, и скорости, которую
точка М получает
при вращении фигуры вокруг этого полюса.
Модуль и направление скорости
находятся
построением соответствующего
параллелограмма (рис.31).