
- •Вопрос 1(Предмет и содержание тм. Статика, предмет и задачи статики. Основные понятия статики. Аксиомы статики.)
- •Первая аксиома.
- •Вторая аксиома.
- •Третья аксиома.
- •Четвертая аксиома.
- •Пятая аксиома.
- •Шестая аксиома.
- •Вопрос 2(Связи и реакции связей. Аксиома связей – основной принцип решения задач статики.)
- •Вопрос 3(Теорема о непараллельных сил равновесии 3-х.)
- •Вопрос 4(Геометрический и аналитический способы задания силы. Проекция силы на ось и на плоскость. Способ двойного проецирования)
- •Вопрос 5(Геометрический и аналитический способы сложения сил.)
- •Вопрос 6(Сходящаяся система сил. Равнодействующая системы сходящихся сил.)
- •Вопрос 7
- •Вопрос 8(Момент силы относительно центра как мера вращательного действия силы. Алгебраический момент силы относительно центра.)
- •Вопрос 9(Теорема о моменте равнодействующей (теорема Вариньона).)
- •Вопрос 10
- •Вопрос 11(Пара сил, алгебраический момент пары сил. Момент пары сил как вектор. Теорема о независимости суммы моментов сил, составляющих пару, относительно произвольного центра.)
- •Вопрос 12(Теорема об эквивалентности пар на плоскости.)
- •Вопрос 13
- •Вопрос 14(Теорема о сложении пар в пространстве.)
- •Вопрос 15(Условия равновесия системы пар на плоскости и в пространстве)
- •Вопрос 16(Лемма о параллельном переносе силы (лемма Пуансо).)
- •Вопрос 17,18
- •Вопрос 19(Уравнения равновесия произвольной плоской системы сил в трех формах)
- •Вопрос 20
- •Вопрос 21(Сосредоточенные силы и распределенные нагрузки. Жесткая заделка)
- •Вопрос 22(Равновесие системы тел. Определение реакций внешних и внутренних связей)
- •Вопрос 23(Трение скольжения. Законы трения. Коэффициент, угол, конус трения. Область равновесия)
- •Вопрос 24(Трение качения, коэффициент трения качения)
- •Вопрос 25
- •Вопрос 26(Момент силы относительно оси. Зависимость между моментами силы относительно оси и относительно центра, лежащего на этой оси)
- •Вопрос 27(Момент силы относительно центра как вектор. Векторная формула для нахождения момента силы)
- •Вопрос 28(Приведение произвольной пространственной системы сил к центру (теорема Пуансо). Главный вектор и главный момент произвольной пространственной системы сил)
- •Вопрос 29
- •Вопрос 30(Частные случаи приведения произвольной пространственной системы сил к центру)
- •Вопрос 31 Равновесие тела под действием пространственной системы сил
- •Вопрос 32(Центр параллельных сил и его координаты)
- •Вопрос 33(Центр тяжести тела и его координаты. Способы определения положения центра тяжести)
- •Вопрос 34(Центр тяжести однородных тел. Центр тяжести объема, поверхности, линии. Примеры (центр тяжести треугольника, дуги окружности, кругового сектора))
- •Вопрос 35(Предмет и содержание кинематики. Основные понятия и задачи кинематики)
- •Вопрос 36(Способы задания движения точки. Связь между координатным и естественным способами задания движения точки)
- •Вопрос 37(Определение траектории, скорости и ускорения точки при векторном способе задания движения)
- •Вопрос 38(Определение траектории, скорости и ускорения точки при координатном способе задания движения)
- •Вопрос 39(Естественный трехгранник и естественные оси. Кривизна траектории) Естественный трехгранник
- •Вопрос 40(Скорость и ускорение точки при естественном способе задания движения. Нормальное и касательное ускорения)
- •Вопрос 41(Равномерное и равнопеременное движение точки)
- •Вопрос 42(Задание движения твердого тела. Поступательное движение твердого тела. Теорема о траекториях, скоростях и ускорениях точек тела при поступательном движении)
- •Вопрос 43(Вращательное движение тела вокруг неподвижной оси. Уравнение вращения. Угловая скорость и угловое ускорение. Векторное представление угловой скорости и углового ускорения)
- •Вопрос 44(Скорость и ускорение произвольной точки вращающегося тела)
- •Вопрос 45
- •Вопрос 46(Плоское движение твердого тела и движение плоской фигуры в своей плоскости. Уравнения плоского движения тела)
- •Вопрос 47(Определение скорости произвольной точки плоской фигуры. Теорема о сложении скоростей при плоском движении. Теорема о проекциях скоростей двух точек)
- •Вопрос 48(Мгновенный центр скоростей (мцс). Способы определения положения мцс)
- •Вопрос 49
- •Вопрос 50(Понятие о мгновенном центре ускорений)
- •Вопрос 51(Определение ускорения произвольной точки плоской фигуры Теорема о сложении ускорений при плоском движении)
- •Вопрос 52(Сложное движение точки. Теорема о сложении скоростей при сложном движении точки)
- •Относительное движение – в движущихся осях уравнениями
- •Вопрос 53(Сложное движение точки. Теорема о сложении ускорений при сложном движении точки)
- •Вопрос 54(Ускорение Кориолиса. Случай равенства нулю кориолисова ускорения)
- •Вопрос 55(Движение твердого тела вокруг неподвижной точки (сферическое движение). Углы Эйлера. Уравнения движения)
- •Вопрос 56(Мгновенная ось вращения. Векторы угловой скорости и углового ускорения. Скорость произвольной точки тела (без доказательства))
- •Вопрос 57(Общий случай движения тела. Скорость и ускорение произвольной точки тела в общем случае (без доказательства))
- •Вопрос 58(Сложное (составное) движение твердого тела. Сложение поступательных движений) Скорости точек твердого тела в сложном движении.
- •Вопрос 60(Пара мгновенных вращений. Кинематический винт. Мгновенная винтовая ось)
Вопрос 23(Трение скольжения. Законы трения. Коэффициент, угол, конус трения. Область равновесия)
Тре́ние — процесс взаимодействия тел при их относительном движении (смещении) либо при движении тела в газообразной или жидкой среде. По-другому называетсяфрикционным взаимодействием (англ. friction). Изучением процессов трения занимается раздел физики, который называется механикой фрикционного взаимодействия, или трибологией.
Трение главным образом имеет электронную природу при условии, что вещество находится в нормальном состоянии. В сверхпроводящем состоянии вдалеке от критической температуры основным «источником» трения являются фононы, а коэффициент трения может уменьшиться в несколько раз
Установлены следующие приближенные законы трения качения.
Первый закон. Максимальный момент пары сил, препятствующий качению, в широких пределах не зависит от радиуса катка.
Второй закон. Максимальный момент сопротивления качению пропорционален силе нормального давления катка на опорную плоскость и достигается в момент выхода катка из положения равновесия
;
(условие начала качения катка).
Коэффициент
называют коэффициентом
трения качения или коэффициентом
трения 2-го рода.
Он имеет размерность длины.
Коэффициент трения качения равен плечу пары сопротивления качения при предельном равновесии катка (рис. 1.29).
Третий закон. Коэффициент трения качения зависит от материала катка, опорной плоскости, а также от физического состояния их поверхностей.
В момент начала качения катка (выхода катка из положения равновесия) имеем (рис. 1.29)
;
;
.
Коэффициенты трения качения устанавливаются экспериментально.
Пусть
твердое тело под действием активных
сил находится на шероховатой поверхности
в предельном состоянии равновесия,
когда сила трения достигает своего
максимального значения
при
данном значении реакции (рис. 1.28). В этом
случае полная реакция шероховатой
поверхности отклонена от нормали
общейк
асательной
плоскости трущихся поверхностей на
наибольший угол
.
Угол между полной реакцией, построенной на наибольшей силе трения при данной нормальной реакции, и направлением нормальной реакции, называется углом трения
;
.
Из рис. 1.28 следует
;
.
Тангенс угла трения равен коэффициенту трения
.
Конус с вершиной в точке приложения нормальной реакции шероховатой поверхности, образующая которого составляет угол трения с этой нормальной реакцией, называетсяконусом трения (рис. 1.28).
Все максимальные реакции шероховатой поверхности направлены вдоль образующих конуса трения.
Если коэффициент трения во всех направлениях одинаков, то конус трения круговой.
Конус трения интересен тем, что ограниченная им область определяет область равновесия тела. Если линия действия равнодействующей активных сил проходит внутри конуса трения, то эта сила не сдвигает тело, как бы она не была велика. Если же линия действия равнодействующей активных сил расположена вне конуса трения, то эта сила сдвинет тело, как бы мала она не была.
Конус трения интересен тем, что ограниченная им область определяет область равновесия тела. Если линия действия равнодействующей активных сил проходит внутри конуса трения, то эта сила не сдвигает тело, как бы она не была велика. Если же линия действия равнодействующей активных сил расположена вне конуса трения, то эта сила сдвинет тело, как бы мала она не была.