
Функции нескольких переменных.
При изучении многих явлений приходится встречаться с функциями двух и более независимых переменных.
Примеры.
Площадь прямоугольника со сторонами х и у: S=xy.
Объем прямоугольного параллелепипеда с ребрами x,y,z: V=xyz.
По закону Ома, напряжение U в цепи электрического тока связано с сопротивлением R цепи и силой тока I зависимостью U=RI. Если считать U и R данными, то I определится как функция от U и R: I=
.
Элементами арифметического пространства Rn являются упорядоченные наборы из n действительных чисел (х1,х2,…,хn). Эти упорядоченные наборы называются точками n-мерного пространства или n-мерными векторами.
х=(х1,х2,…,хn), у=(у1,у2,…,уn). х1,х2,…,хn – координаты точки.
Определение. Расстояние между точками х=(х1,х2,…,хn) и у=(у1,у2,…,уn):
d(x,y)=
(1)
Свойства расстояния:
1) d(x,y)0, причем, d(x,y)=0 х=у, т.е. xi=yi i=1,2,…,n.
2) d(x,y)=d(y,x) – свойство симметрии.
3) d(x,y)d(x,z)+d(z,y)
x,y,zRn
– неравенство треугольника (
+
).
Пусть a(а1,а2,…,аn) – произвольная точка пространства Rn и пусть R>0 – некоторое число. Множество всех точек x(х1,х2,…,хn):
В(a,R)={xRn: d(x,a)<R} - открытый шар (сфера) с центром в точке а и радиуса R.
(a,R)={xRn:
d(x,a)R}
– замкнутый
шар (сфера) с центром в точке а и радиуса
R.
S(a,R)={xRn: d(x,a)=R} – сфера в Rn.
Следовательно, уравнение сферы в Rn:
=R (2)
Определение. Пусть имеются числа a1,…,an и b1,…,bn такие, что a1<b1,…,an<bn. Множество всех точек M(х1,х2,…,хn)Rn, для которых
называют открытым параллелепипедом – Р.
Множество всех точек M(х1,х2,…,хn)Rn, для которых
называют закрытым
параллелепипедом –
.
Точка С(
,…,
)
– центр
параллелепипеда.
Открытую сферу
любого радиуса R>0
с центром в точке М0(
,…,
)
можно рассматривать как окрестность
этой точки. (Аналогично, в качестве
окрестности можно рассматривать открытый
параллелепипед с центром в точке
М0(
,…,
)).
Определение. Пусть Е – некоторое множество точек из Rn. Множество Е называется ограниченным, если существует число R>0 такое, что все точки множества Е оказываются лежащими внутри сферы радиуса R с центром в точке О(0,…,0).
Теорема. Пусть множество Е(М)Rn. Пусть
{x1} - множество, которое образуют первые координаты точек МЕ,
…………………………………………………………………………..
{xn} - множество, которое образуют n-е координаты точек МЕ.
Для того, чтобы множество Е(М) было ограниченным необходимо и достаточно, чтобы были ограниченными одновременно множества {x1},..., {xn}.
Доказательство. Необходимость. Пусть Е(М) – ограниченное. Следовательно, существует число R>0 такое, что d(M,O)<R M(x1,…,xn)E. Тогда имеем
0x1
<R,
… , 0xn
<R
M(x1,…,xn)E
А это и означает, что множества {x1},..., {xn} ограничены.
Достаточность.
Пусть множества {x1},...,
{xn}
– ограниченные. Следовательно, С>0:
x1<C,
… ,xn<C
M(x1,…,xn)E.
Тогда
<C
=R
т.е., d(M,O)<R ME. А это означает, что множество Е – ограниченное. ч.т.д.
Определение. Множество называется открытым, если каждая точка этого множества входит в него вместе со своей окрестностью.