
- •Эконометрическая модель.
- •Измерения в экономике. Шкалы измерений.
- •Случайные события и случайные переменные. Распределение случайных величин.
- •Статистические характеристики случайных величин и их свойства.
- •Основные функции распределения.
- •Оценки статистических характеристик и их желательные свойства.
- •Проверка статистических гипотез.
- •Критерий и критическая область.
- •Мощность статистического критерия. Уровень значимости.
- •Модель линейной регрессии.
- •Оценивание параметров регрессии. Метод наименьших квадратов.
- •Система нормальных уравнений мнк и ее решение.
- •Свойства оценок параметров, полученных методом наименьших квадратов. Условия Гаусса – Маркова.
- •Коэффициент детерминации и его свойства.
- •Предположение о нормальном распределении случайной ошибки в рамках классической линейной регрессии и его следствия.
- •Доверительные интервалы оценок параметров и проверка гипотез об их значимости.
- •Прогнозирование по регрессионной модели и его точность. Доверительные и интервалы прогноза.
- •Ковариационная матрица оценок коэффициентов регрессии.
- •Проверка значимости коэффициентов и адекватности регрессии для множественной линейной регрессионной модели.
- •Коэффициент множественной детерминации. Скорректированный коэффициент детерминации.
- •Проблемы спецификации регрессионной модели. Пошаговая регрессия.
- •Проблема смещения Предположим, что переменная у зависит от двух переменных х1, и х2 в соответствии с соотношением:
- •Неприменимость статистических тестов
- •Замещающие переменные. Фиктивные переменные.
- •Мультиколлинеарность. Влияние мультиколлинеарности на оценки параметров уравнения регрессии.
- •Методы борьбы с мультиколлинеарностью.
- •Линеаризация регрессионных моделей путем логарифмических преобразований.
- •Модели с постоянной эластичностью. Производственная функция Кобба - Дугласа.
- •Модель с постоянными темпами роста (полулогарифмическая модель).
- •Полиномиальная регрессия.
- •Кривая Филипса
- •Гетероскедастичность. Последствия гетероскедастичности для оценок параметров регрессии методом наименьших квадратов и проверки статистических гипотез.
- •Признаки гетероскедастичности и ее диагностирование. Обнаружение гетероскедастичности
- •1. Графический анализ остатков
- •2. Тест ранговой корреляции Спирмена
- •3. Тест Голдфелда-Квандта
- •Оценивание коэффициентов множественной линейной регрессии в условиях гетероскедастичности. Обобщенный метод наименьших квадратов.
- •Автокорреляция. Причины автокорреляции.
- •Влияние автокорреляции на свойства оценок мнк.
- •Тест серий. Статистика Дарбина – Уотсона.
- •Способы противодействия автокорреляции.
- •Стохастические объясняющие переменные. Последствия ошибок измерения.
- •Инструментальные переменные.
- •Лаговые переменные и экономические зависимости между разновременными значениями переменных.
- •Модели с распределенными лагами.
- •Модели авторегрессии как эквивалентное представление моделей с распределенными лагами.
- •Ожидания экономических агентов и лаговые переменные в моделях
- •Модели наивных и адаптивных ожиданий.
- •Модель гиперинфляции Кейгана.
- •44. Модель гиперинфляции Кейгана
- •Понятие об одновременных уравнениях. Структурная и приведенная форма модели.
- •Структурная и приведённая форма. Идентифицируемость
- •Примеры
- •Проблема идентификации. Неидентифицируемость и сверхидентифицированность.
- •Оценивание системы одновременных уравнений. Косвенный и двухшаговый мнк.
- •Системы эконометрических уравнений с лаговыми переменными.
- •Модель Кейнса.
- •Модель Клейна.
- •Матричная форма записи модели Клейна
Доверительные интервалы оценок параметров и проверка гипотез об их значимости.
Доверительные интервалы параметров регрессии определяются следующим образом.
Здесь td - значение t-статистики для выбранного уровня значимости d. Величина p=1-d называется доверительной вероятностью или уровнем надежности, нередко выражаемым в процентах. Это показатель, характеризует вероятность того, что теоретическое значение параметра регрессии будет находиться в полученном доверительном интервале.
Статистической гипотезой наз-ся предположение о свойстве генеральной совокупности, которое можно проверить, опираясь на данные выборки. Различают простые и сложные гипотезы.Простая-если она однозначно хар-ет параметр распределения случайной величины.Сложная-если состоит из конечного или бесконечного числа простых гипотез,при этом указывается некоторая область вероятных значений параметра. Гипотезы о параметрах ген.совокупности наз=ся параметрическими,о распределениях или структурных характеристиках(моде,медиане)-непараметрическими.
Стат.критерий-определенное правило,устанавл.условия,при которых
проверяемую нулевую гипотезу следует либо отклонить,либо не отклонять.
решение |
Правильная гипотеза |
|
|
Н |
H |
принять |
Нет ошибки |
Ошибка 2 рода |
отклонить |
Ошибка 1 рода |
Нет ошибки |
Критическая область-попадание значения стат.критерия в неё приводит к отклонению.(вероятность попадания равна принятому уровню значимости)
Область допустимых значений дополняет критич.область.если значение критерия попадает в область доп.знаячний,то выдвинутая гипотеза не противоречит фактическим данным(Н не отклоняется).
Часто на практике необходимо ответить на вопрос: значимо ли отличается коэффициент регрессии от определенного значения С.
Схема тестирования гипотезы (критерий Стьюдента) выглядит следующим образом:
Н0: β = С – нулевая гипотеза
H1: β ≠ С – альтернативная гипотеза
• Вычисляются МНК-оценки коэффициентов регрессии и их стандартные ошибки
• Рассчитывается наблюдаемое значение статистики t: tнабл
• Выбирается требуемый уровень надежности γ (95%, 99%,99,9%) и находится критическое значение статистики Стьюдента с соответствующим количеством степеней свободы: tкрит
• Если |tнабл| > tкрит (по модулю), то нулевая гипотеза отвергается в пользу альтернативной, если нет – нулевая гипотеза не отвергается.
P-значение
Часто удобнее рассматривать непосредственно вероятность того, что наблюдаемое значение не превысит критическое: P-значение или p-value – это вероятность принятия гипотезы, т.е. если p-значение < уровня значимости, который равен 0,01; 0,05 или 0,10 (чаще всего это 0,05), то нулевая гипотеза Н0 – отвергается. Часто проверяется гипотеза H0: β = 0, которую в этом случае называют гипотезой о незначимости коэффициента.
Доверительные интервалы для коэффициентов регрессии
Доверительный интервал – это вычисленный на данных интервал, который с заданной вероятностью покрывает интересующий нас неизвестный параметр генеральной совокупности. В его основе используется стандартная ошибка оцениваемого параметра.
Приведенный интервал называют γ-процентным (90-, 95- или 99-процентным) доверительным интервалом для истинного значения коэффициента β.